(€'FT uond3G) SunOo[pI0d3I pue (G'y UONISG) uonouTy

JUTT 9y} aquOSIp am usym suoneado stwoge jo ordoy ayj 03 wingal I3\ "pauriojrad

aq 03 sdajs a3 Jo 39sqns e 10§ 3[qrssod aq Jou jsnur 3| ‘pauriopiad are duou o ‘pauiojrad

are sdojs ayy qe 1oypre ‘Aeorwoje pawoyzad st uonersdo ayy ji “sdays srdumur jo
pasodwos aq ySrwr yeys uonerado ue 0} SI9jaI1 U0HpAado 1UI0jY WIB) 3Y ‘Tersudd uf

-wajqoxd sny; sproae uonjerado

dTuwIoje S[3UIS B OJUI UOHEIId Y} pue J0UIJSIXd 10J 153} Y} SUTUIqUIO) “PaFNIX3

S1 7230 STy} USYM pIseId ST ejep Jey) ‘a[y ay} 0} Suryjawos sajtim ss00xd 1Yo jeys

J1 PUE ‘S[[Ed UORIUNy OM] 3s3} Udam3aq ssad01d 1ayjoue £q pajeald st o[y o J] "3e8I0

o) pue usdo ay UsamIaq ssadoxd 1ayjoue Aq pajesid st [y Ay J1 s> wsfqoxd Ay

{

! (30112 uado,)sAs 119 {
} es1e {
! (,I01X9 3e2ID,)SAS 1I9
(0 > ((opow ‘sweuyied)iesid = p3)) 3IT
} (INFONF == ouxris3) JT
} (0 > ((xINO¥M Q ‘sweuyiedjusdo = p3)) 3T

A1y ySruz am ‘uorzerado orwioje s1y} ALY
3,uUpip am j] -uonerado dwoje ue se pawrroyiad sem o[y ay} JO UONEIId 3} pue [y Ay}
JO DUIISIXS 3} 10§ HI3YD 3} JeY) Pres Os[e I\, 'SISIXd Apeaie a1y ay J1 [rey [im uado
a3 ‘paywads are suondo asay; JO Yj0q USYM UOBdUNY uado ayj 10§ suondo TOXH O
pue LYEID O Y} PaquIsap am uaym uonerado orwoje ue jo sjdwiexs IYjoue mes I

aji4 e Bupeas)

-suondadxa
IRJIUITS YJIM ‘93 TIM O} [[ed © £q pamorjoj sfees T 3ulfed 0} jusreamba st a3 1amd 3urfed

-payepdn jou st 13jutod o[y YL e

-peaxd Suisn suonesado omj ayy ydniisjur 0} Aem ousI o1l e

‘suordaoxa urmorjoj
a4} Yim ‘peax 03 [[ed & Aq pamofjoj oS T Jurpred 03 jusfeambs st pesad Burred

IOLI3 UO T— ‘YO J1 USNIIM S234q JO JdqUINU :SUINIY
! (jasffo 27330 ‘sayfqu 37 92ZTS ‘fngx PTOA 3SUOD ‘sapapf qut)oatamd 3 BzTSS
10113 UO [— ‘3 JO PUS JI () ‘PeaI $9}4q JO JOQUINU SUINIY

! (jasffo 3 330 ‘sajhqu 37 °zTs ‘fngx pPTOA ‘sapayf aut)pesad 3 9zTss

<y p3asTuUn> SPNIOUTH

¢/ suogerddp orwory II'€ uonddg

(0 ‘addnd 4 ‘SSpSTT3) TIUd3
03 Juareamba st
! (sepa1T3)dnp
1182 3Y3 ‘padpu] “§1 '€ UOHIIG Ul 9qLIdSap
M PIYM ‘uopdouny T3Iud3 3y} ypm st 1oiduosap e aeoridnp 03 Aem 1syjouy
‘suonouny dnp ay
Aq pazeapd s{emie st 103dLSap mau ay) 10§ Sey 103dLIOS3P [J9XI-UO-ISO[D Y} “UOHIS
1X3U 9y} Ul 2qLIdSAP am Sy "s3efy 103dLIDSAP (Y JO 195 UMO S} sey 103dLdSIp yoey
*J9SJJO Y JUSLIMD
awres ay) pue—uo os pue ‘puadde ‘ajum ‘pear—s3eyy snyeys oy swes ayj areys Loy
‘Aua ajqey oy awres ayy o3 jurod s1o)dudsap yjoq ssnedag “([[ays ay 4q pauado are
T pue ‘[‘g durs ‘st Ajqeqoid 31 yorym) ¢ st 103d1Idsap a[qereAe 3xau ayj jeyj wnsse I

‘(1)dnp = pImau
SaIMOIXa ssad01d ayj ‘pajaess s 31 uaYMm ey} Surwnsse a1,om ‘am3y sy} uj

(1)dnp 193je samnONIS vjep PUIDY §°¢ ISy

3Z1S J[Y JUSLIND

UOBLLIOJUT +— Jajutod apou-a

apou-1
PO J9SJJO 9 JudLINd op

uojeuLIojut Ly
apou-A s8eyy smyejs oy / 0ps
P o e — 1uod s8ep
oY PJ

3[qe} Ipou-A a[qes 3y

Anyus a[qey ssadoid

"g'¢ 9IN31 Ul SIY} MOYS apq “uawngre sapajyf 3y se A1jua d[qes 3y

aures 3y} $oIRYS SUOHOUNJ 3Y} JO aNJeA 3Y) S pauIn}ai st jeyy 103dLdsap o[y mau ay .
<31 BUTSOPD INOYIIM Zsapapy suanjar zdnp usyj
‘zsapary spenba sapapy j1 "pasopd sy st 31 ‘uado Apeare st zsapapy 31 yuswnSie gsapapy
3y3 ynm 103d11osap mau ayy Jo anjea ayy Ayads am ‘zdnp yppy 103disap oy sjqeieae
paI2aqunu-3$amo[9y} aq 03 pasjuerend st dnp Aq paurnjar 103dudsSap o[y mau ayL

10118 U0 T— YO J1 103d1IDSap 3 MU wInjal yjog
: *(gsapary Aut ‘sapapy 3ut)zdnp 3ut
! (sapajyf qur)dnp 3uTt

<Y p3ISTUN> SPNTOUTH

"suonouny uIMo[oy ayj Jo 1ayste Aq pajedridnp st 103dsap oy Sunsixe uy

suonoungd zdnp pue dnp g|'g

¢ 1deyd 0/1 914

9L

"uondUNy DUAS 3Y) S[[ed Os[e (T)OUAS puBWIWOd 3Y], "SId3Jng Yo0[q
s,]oway ay jo Jurysnyy renSar saajuerens sryl, ‘o3epdn PI[Ed USJO “UOWIEP Wa}SAS
® wolj (spuodas ¢ A1aaa A[[ensn) Ajeorportad pajred Ajjewniou st ouAs uonduNy SYJ,

-30e[d 3xe} 0} SALIM NSIP 3} IOJ JTeM J0U S0P 3
‘surnjal pue SunuMm 10§ sI2)yNq MO0[q PIYTpowr 3Y; ffe senanb Ajdwuts uonouny ouks ay L

! (pToAa)DUks pTOA
I04I9 U0 [— MO JI 0 suImay] .
! (sapapyf IuT)ouhksedepi UT

! (sapapyf 3ut)OUASI 3UT

<Y pPaASTUN> SPNIOUTH

‘papiaoid are suorouny
oukselep3 pue ‘DUAs3 ‘DUAS Y} ‘9YdeD IYYNJ Y} JO SPUSIUOD 3} YHM JSIp U0 wd)sAs
3[y a3 JO ADUS)SISUOD AINSUS Of, "J0[q YSIP IBYI0 SWOS I0J IdJJnq 3} SNl 0} Spasdu
1T UayM A[[euLIOu “SIP 03 SYO0[q AIM-PIAEPP 33 [[8 SSHIM A[[enjudAd [2UId) YL

(‘Tre3ap ur ayoded 1pnq
STy} sassnosIp [9861] yoeg jo ¢ 10ydeyD) -ajum pahiviap PaJed St SIYL "SWN I2)e] SWOS
18 ysIp 03 Sunim 10§ pananb pue sIAFNQ SH JO U0 OUT [P Ay} 4q pardod Ajreuriou st
B1Rp S} ‘[© O3 BIep ALIM am Usyp “sassed /] MSIP ISOW YPIYM Y3noIyy [2uIay
w ayoed aded 10 ayoed 1dyNq € ARy WASAS XIN(] oY} JO suoneyuawa[duur [euonpel],

suoljouny oufsejepi pue ‘Oudsy ‘Ouis

“Tquo3 Jo aInjesjy q4dnd d ay pue zdnp yjoq saxmbai 'XISOd feuonouny addna 4 ay
pue uonouny TIuo3 ayy dn payord qsdzd pue ‘uonduny zdnp 3yl dn payord Z€IAS ‘A WaisAg
UM panupuod pue Ji] wiaisAg yim pareadde siopdudsap oy Suyestdnp 10§ poyw T3IUD3
ay] 'sasespa1 0sg aw ySnonyy parededoid pue £ uorsiop yim pareur8uio [fed> wajsAs zdnp Y],
‘T3uo 3 pue zdnp Usamiaq SIOUIIJPIP OUIIS WS 1B Y], T
(‘o1 193deyD ur syeudis
aqusap apy) ‘s103dLdsep [y Ayl AJipowr pmod jeyy T3IUDF Y} pue ISOTD
3Y} UsaMIdq PI[[ed Iayd}ed [eudiS e dAkY 0} 3sed 19)3e[3y} Ul arqrssod st 3] "s[[ed
UOHOUNJ OM] SIA[OAUL ULIOJ SjeUId)[e 9Y} Sealoym ‘uoyyerado onwoje ue st zdnp

"SMO[[O] SE 3Ie SIOUIIIJIP YL
‘Taud3 ue £q pamo[[0j SSOTD E se dwres 3y} A[Joexd jou st zdnp ayj ‘ased Jsef sy} U]

! (zsopelT3 'Qddnd 4 'S8paTTF) [3uUd3
! (zsepe1T3)esoTd

03 juafeamba st
! (zsepa1T3d 's9paTTI)cdnp
[reo ay3 ‘Ajreqrunis

€L’

LL suopgouny duAse3ep3 pue ‘Oudsy ‘DUks €T'E uondag

By DIXIOTD ad ays :paumyadp st Sepy 103d11osap a1y auo ATuo Appusrimny)
'uonpUNy 3y} Jo anfea ay) se sapajy 10y sdeqy ro3duosap oy oy wIMBY AALIAD d
(g 1ardey)
U SSNOSTP 9M YPIYM “0ox3 ue ssorde uado 337 st 103dLdsap ayj jey) suesw
sty1) ‘paresp st ey 103dLdsap o[y DEIXHOTD ad sy pue ‘s3eyy 103duosap
3y Jo 39s umo sy sey 1oyduosap mau Yy Ing ('g'c M3l 0} I19j3Y)
‘sapaqy se A13ud d[qe) a[1y awres a3 sareys J0}dLSIp mau Y] ‘(198a3ur ue
se uayey) Juswmnre pangs ay) 03 enba 10 ueyy 193e213 st ye ‘uado Apeaye
jou st jey; 103dLIDSSp PAIdqUINU-ISIMO] 3} ST 3] "UOTdUNJ Y} JO aNfeA dY)
se paunja1 st 103dLdssp o[y mau ayJ ‘sapapy 103dudsap o[y ayy georidnq qddnd 4

'I{.IJLIB alge;} 3l Yyoes Ym pajeidosse SSEH snjels Il oyl pue z(uua olqe; ssadoxd 9Y3}
ur 10)dLIdsap 3y Yoea y3tm pajerosse sdepy 103duIosap a[yy ay yoq 03 Suriiagar aq [[,om
aouts ‘9'¢ am3r 0} 1919y ("UDD0] PI0dAI YHM [B3D UOTYM ‘DdIY) ISE] Y} AqLIISIP O}
€1 UOI}IAG (UM JIEM [[,9pA) 'SON[BA pHid U3} 3S3UJ} JO USASS JSII S} ACLIISIP MOU [[,9M

(MMTLES A 10 MTLIAS 4 MTILID d = puid) $I0] pI0da1 395 /3199 °G
(NMOLES 4 10 NMOLED 4 = puw) diyszaumo (/] Snouonduise 33s /390
(T418S 410 T418D 4 = pud) s3efy snjess o[l 39 /190
(@313s 410 adran d = pud) s3epy 103d110sap a[y 19s /399
(@aana 4 = pwo) 10yduosap 3unsixs ue sedridngg

~ & 5 <

‘sasodind juaragTp 2AY 10§ pasn st uonOUNy TIUDF Y],
"am3onas e 03 1djurod e sawodaq Juswmgie pany) ayj ‘¢ H UODAG Ut Suryooj
PI0Da1 AqUIdSOP am udym jng -umoys isnf adAj0j01d uonouny ayy ur JUSWIWOD A} 0}
Gurpuodsaziod ‘198ajur ue sfempe s1 Juswngie pary) ayj ‘uondas sy ur sajdurexs ayy Uy

10119 U0 - “(3UIMOT[0] 93S) M JT pul2 uo spuadap :suIm3ay
{(/x v UT x/ *°° ‘pwd aut ’sapa;g[JUT) TIUDI 3JUT

<Yy’ T3UDF> IPNTOUTH

‘uado Apeaare st yeys aqy e jo sanzadoid ayy a8ueyd ued uonduny TIULJ AYT,

uonoungd T3ud3

‘ouiAseyepy poddns jou op €01 X SO SN Pue 176
(dSg931] ‘19a3M0H ‘ouks3 pue duks yroddns yooq siy ur paqudsap swogerd ay Jo 1oy |1y

‘A[snouoxydouds pajepdn os[e are sainquiie s, 91y 343 ‘OUAS I YIM dy e
jo suonzod eyep ayj AJuo spagye 31 Inq ‘DUAS 3 0] JR[IWIS ST UOROUNY DuAseleps ay[
“SIP Y} O} USJJLIM U33q dARY
S$Y00[q PIYIPOW Y} JBY} INS 3q 0} SPaIdu jey; ‘aseqejep e se yons ‘uonedrdde ue 105 st
Duksy jo asn papuajur 3y Suruiniar a10§aq 233[dWOd 03 S3JLIM YSIP Y} 10§ S}IEm pue
‘sapapyf 101d10sap ayy ayp Aq paygwads ‘o a[durs e 03 AJuo s19ja1 DUAS 3 UoOHdUNY A,

vi'e

¢ mydeyd 0/1 31

77

‘a1 dnoi3 ssaooid aane3au e 10 ([ssadoixd aanisod
(<uyy 3y} pue ‘sefy Surpuodsariod sy umyar om jxau 3y ‘103dudsap Iy
«INJ213SIY BY L, ‘NMOLID A PUe "TALIAD A ‘QALIAD J ‘QIdNA J :SINJRA WInjal
.5 9ARY Spuewiwiod Inoj SUImor[oy YL MO JI an[eA I9Yj0 3WOS I0 IOLD Ue Uo
,— UINJ3J SPUBWIWO) [[Y PUBWIWIOd Y} U0 spuadap TIUDJ WOy IN[BA UINJDI Y],

-4v Jo anjea aynjosqe ayj o3 fenbs g1 dnoi ssavoxd
e saridwt 8w aanedau v 'y ssadoxd e sagads S aanisod vy speulis

HYNOIS pue OIHIS Yl dA1RAI 03 (] dnoid-ssadoxd 10 QT ssedoxd 3y} 19§ NMOLIAS 4
"CT9P1 uondss
ur speudls (/] SNOUOIYOUASe 3SaY} IqLIdSIP S\ s[eudis DuNDIS
pue 0I9IS 3y} uraredar Apuarmd (] dnoid ssavoid 10 (] ssad01d 9y} 399 NMOLID 4
"ONASY O pu® ‘DNASA O ‘ONASY O ‘ONASA O’DNAS O
“DOTENON O ‘ANAdAY O aie padueypd aq ued jey} s3ejy ATuo ay] -(123apur
ue se udyey) juswndie pIny) sy Jo anjea ayy 0} sdey smeys Iy Y} 135 TALEAS 4
"sanfea 31y} 3y} Jo Aue jsuree Jnsaz
ay) aredwod usy} pue SjIq SPOW-SSIDOE Y} UILIqo 0} NSBW FAOWIDY O
3} ISN ISIY ISNUWI IM ‘2I10Jo19Y], ('PIJqeus 321y} dY) JO U0 AJUO 3AeY ued
3} B ‘BAISNXd A[[eninul aI1e sanjeA 921y} 3SaY) ‘OS[y 'SUOSEdI [edLI0)STY
10§ ‘Aeandadsar ‘g pue ‘I ‘g san[ea 9y} SABY US}JO J9IY} ISIY) ‘IOI[Ied
pauonuawWw oM SY) ‘palsa) aq ued jey Sjq djeredss jou are—uMad O
pue ‘XINOIM O ‘ATNOQY O—s3e[J apow-ssadde a1 3y ‘A[ereunyiojun
T3uo3 105 s3epy snyeys [y 6'¢ 2InSry
(A1U0 X SO deIA pue (JSg3d14) O/ SNOUOIYdUASe DONASY O
(£]uo X SO 2B pur (1Sga91) 339[dwod 03 SALIM I10] Jiem ONASd 0O
SIJLIM pUR SPEAl SZIUOIYIUAS ONASY O
(A'[uo eyep) aza[duxoa 0} S3juIM I0J Jrem JONASA O
(samquiyie pue ejep) 33o[dwod 0] SANLIM I0] Jiem ONAS ©
apow Sunpojquou MDOTENON O
M yoes uo puadde aNdddy o
Bunum pue Surpear 105 uado MY O
Afuo Bunuim 105 uado ATINO¥M O
A[uo Buipear 105 uado ATINOQY O
uonduosag Geyy snyels aq1g
"6°¢ 9In31] ur pajsI| aI1e
Koy -uompuny usdo Y} paqLIdSIP IM UM s3eyj sniess [dY3 paqLIdsap
M uomduny AYj JO INnfeA ayy se sapapy 10§ sde snjeis Y Y WINIY TIIED g
*(09%3-U0-3s0[> Op) | 10 (J[nNeJap 3y} ‘D3X3-U0-3sOo[d
3,uop) 1y3d 03 Seyy ays 18s swerdord sy} ‘pearsu] DEXIOTD @ JUBISUOD 3} SN
3,uop s3epy 103d1Idsap 3y ayy Yiim [eap jeyy swerdoid 3unsixs Swios jey areme ag
“(19833ur ue se usxey) JuswmnSIe pIny
3y} woxy 33s st anjea ey mau 9y ‘sapajy 1oy sepy 103dLdsap I[Y Y3 19§ AALIS 4
6. uoyduny TIUDI AR RIS IRETS

101duosap payrads 1oj sfepy ofg uug o1 3By

‘(0)3aTxs
{(,u\,)aeyoand
JTpus#
! (u893TIM snouoayoudks ‘,) y3utad
B (DNXSJ O 3 Tea) IT
(ONAS4 O)PSUTISP 3% (HDUNOS O XISOd)pPouTiop; IT#
JTpusy
! (uS93TaIM snouoxyoduls ‘,)3jutrad
(ONXS 0 3 Tea) 3t
(ONAS O)paur3sp IT#
! (yButypOoTqUOU ‘) 33uTad
(MDOTENON O % TeA) 3IT
! (wpuadde ‘,)z3utad
(ANEddY O % TeA) 3IT

{
* (ySpow ss200® umouyun,)dunp xxo
:3Inezsp

{yesaxq
‘(w®3Tam peax,) Jautad
:IMaQ¥ O esed

!yesaaq
! (wATuo ®31am,) 3jutad
‘XINOYM O 9sed

fyesaq

! (nATuo pesz,)zaurad
PATINOQY O 9sed
} (ZAOWDDY O ¥ Tea) yDIIMS

‘(([1]aBae)TO3e ‘,pP% PJ I03F IOII® TIUDJI,)sAs 1xe
(0 > ((0 ‘14189 4 ‘([1]aBIe)TO3®)[3UDF = TeA)) IT

! (n<#x03dTa0S9p> 3no'e :abesn,)3Inb 1io
(¢ =i obxe) 3T

!{Tea urt
}
([]aBxey xeyo ‘ObBae 3UT)uTEW
3ut

<Y’ TIUDI> IpnTouTH
«y'onde, spnyoutrg

103d11s3p yeys 1oy sSep o[y paayas jo uondinssp e spumad pue 103duIdsap
3y e saywads jeys juswmBre surf-puewrwod o3urs e saxe} Or'c am3yy ur weidoxd ayj

ajdwex3

¢ 1dey) ' o/Iad 08

“TeA JuaLIMDd 3y} Yim sEeT3 Jo juswajdwod s,3u0 3y} SNV A[1ed130] Juswajess
sty ‘sojduwexs Iaje] SWIOS UT 3SN [[,2M PIYM ‘T3 ITD PIWeU UOHdOUNy B dAY 9M

/% 330 sbery uiny x/ !sbeTy_ =3 Tea

0} JUSWId}R)S S[PPIW Y} d3ueyd am J|

10)duosop e 105 sSepy SNILIS 3[Y SY} JO AIOW IO U0 UO LMY, L€ nB1g

! (,I01I® TALAS 4 TIUDT,)sSAs 18
(0 > (Tea ’'m4lLAS 4 ‘PI)T3ud3I) IT

/% sbeiy uo uany x/ !sberg =| TeA

f(yI01I® TALED 4 TIUDT,)SAS II9
(0 > ((0 ‘Td1ED 4 ‘P3F)13udy = Tea)) 3IT

1ea juTt
_
/» uo uini o3l sbery snielis ITTF =ae sbeT3y x/ (sbel3 3ur ‘p3 3UT) 13 3I8S
pToa

<Y’ TIUDI> SPnNIOUTH
WUronde, Spnyout#

-10)dLI0Sap

e 10 sSe[j snjels S[Y A} JO SIOWI IO JUO SJAS JEY} UOHOUTY e SMOYS [['E am8ry
‘198 A[snoraaxd azom jey
sy1q Seyy jJo wIn} pnod Sy} se “IILES J ue 10 GALES 4 ue op Ajduurs j,ued apy onfeA
Sepy mau 3y 39S USY pue ‘parsap se 31 Ajrpour ‘anfea Jey Sunsixa ay) yoaj 03 [njared
aq jsnw am ‘sdepy smyeys o[y Yy} 10 s3eyy 103dudSAP IY Ay} PO Ajrpowr am UaymMm

ajdwex3

O °g 103d110sap
opy uo Sunum pue Surpeal 10y ooz dwel 3y ayj suado oo3-dwel<>g ISNEP YL

23TIM peal
oo3-duei<>g G 3no‘e/* §
puadde ‘ATuo 23Tam
oog-dueij<<z z 3no‘e/° §
ATuo 231aIm

ooz dwey 30 §

ooz dwe3y < T 3noe/*
ATuo peax

K33/aep/ > 0 3nO"R/°$

-asn noA fays yorym uo Surpuadap ‘Area
symsay “([[oys ureSe-aumog ay3) yseq woij paxOAUL uaym qarexdoid ay; jo uonerado
ayy smoys 3duos Suimorroy YL "T'XISOd jo Med jou are jeyy s3eyy ssadde Iy Y}
arrdwiod A[jeuonipuod pue EDJN0S O XISOd OIOPW }S3) INJed) 3} ST 9M JeL} SJON

I8 uopdung 13U : pI'e uondag

Ou sajew sALM pake[dap ayy Jo pua sy je oudsy 03 qed e Surppe jep os[e JON
‘OOUSISHIP S[QEINSEIW OU. SAYBW SAJLIM STOUOIYOUAS Yiim duks3y Suisn pue ‘sajum
pakepap uey) aarsuadxa arow 1ej are sajm SNOUOIPUAS :suonyedadxa o ydjew sawy
S} 13 310N "€°0T X SO B UO 5159} dures Y3 10§ S}nsal Juruy smoys ¢1°¢ amgig
109JJ3 OU dARY [[IM DUAS T 0} [[ed € Jey 30adxa am A[snouoryouds afy e Sunum 1ayy
(G aury) sajuIm snouonpuhs noym S[y oy Sunum 1aye ouksy Suipe> se a8re[se
tsnl st ouks3 03 [reo e Aq Pamol[oj sajLIM snouorydPuAs Op 03 3w 3Yj Jey} SMOYSs Yorym
‘aur] yixis ayy Aq paproddns st uonidsns siyy Sepy ONAS O ay} urrouoy 3,ust waysAs
9§ 23% xnury ayj yeys sardwir STy, ‘sa)Im PIKe[ap pasn am Uaym se swres ay) moqe
st A[snouonpuds unrim 10§ swy 3y ‘SMOYS MOI pIIy) 3y} SY Apuedytudis ssearour
PINOYS W YD0[> 3y} pue W} WdysAs 3y} ‘S9lIM SNOUOIYDUAS J[qeus am Uy
ISP 03 ejep a3 3j1im A[[enioe 03 3SOD Y3 SINSLAUI 3,UOP M PUE ‘BUdEd WI}SAS
AU} 0} 03 SAIM INO JEY} SALIIPUT YoIym 1S3} SIy3 10§ ApuesyruSis 9SLAIDUT J,USS0P
3INq 1Y JSIp € 0] 3JLIM dM UdYM OS[e 3SEIIOUT 0} W Y0P 3y 12dXa apy IaAup
AsIp oy £q 3uniam 103 ejep ayj sananb pue ssavord mo w1y ejep 3y} sardod mou
[9U125] Y} 9511€13q ‘31 YSIP B 0} JJLIM 9M USYM SISLIDOUT JUIT} WJSAS dY] JUSISHIp are
TI°¢ 9IN3L{ Ul SMOI PUODaS Pue ISy 3y AYm SI SIY] 31y YSIP Iayjoue 03 SunLm pue o[y
Jstp e Surpear 0} spuodsaiiod Z[-¢ a8 ur moI puodas sy, ‘yndino YSIp ou sem 313y}
0s ‘TTnu/A3p/ 03 SunlIm pue 3[i YSIp e Surpeal painseaw a1om ¢'g a3 ur synsax
OUL 9607 JO HZISAANE © M paInsedw [[e 91am g['¢ amnSi] Ul SMOI XIS Y

SWSIUBYOIW UOHRZIUONYUAS snorrea Suisn symsal Sunuy z3xa xnury zr'g S

S6'L1 7o S0°0 ouksz Aq pamoj[oj 13 DNAS O Yynm JSIp 03 93 Tam
S6L1 LE0 €00 ouks3 Aq pamoyjo JSIp 03 93 TIm
8781 o €0°0 oudsejepy Aq pamoy|o] sIp 0} 23T am
€8'9 0€0 €00 198 DNAS ™ O UiM 3l 3SIp 0} 83 TIm
£89 0co 200 Sl SIP 0} 93 TIM [PULIOU
98'9 91'0 €00 960’y = 321544Nd 10§ G'¢ 2MMS1] WOy JWyy peal
(spuodas) (spuodas) (spuodas) wonuisdo
W 0D | NdD washg | NdD 1980

"T1'€ 2anS1g ug
UMOYs a1e waisAs o[y z3Ixe ap Jursn waysAs xnury e woiy synsax 3yl "19s 3ey DNAS O
Ui YIM Zuny) Swes Ay} S0P Jey) UOISIAA e yyim siyy aredwod pue I1syjoue o} ysIip
Uo 31y duo woly eyep Jo gIN 6'g6 Sutddod 4 arnry ur werSoxd sy unz ues am ‘T3 1593
ol "suni urexoxrd ay} Usym iy YO0 By ISEAIdUT 0} Sepy ONAS™ 0 oy 30adxe apm
"2IN[1eJ WA}SAS [PULIOUqR UR JO 95ED
UL “SIP Y3 U0 A[[enide st ejep a3 jey} 93 TIM & WO WINGAI U0 SMOWY 31 JeL} 08 “ONAS O
3uisn 105 ajeprpues Ay e ST woysAs sseqeiep y Ioje] awmawos aoe[d oxe) ued
uonerado ajuim YsSIp Tenjoe ayy ‘Suntim 1o ejep a3 sananb Ajuo e37am e ‘wshg XINN
oy wr A[fewioN “Sunuingax a1059q NSIp 03 USRLIM 3q 0} ©IEP 3} 10§ JIEM 0} D3 TIM OB
sasned sty “3ej SIM-SNOUOIYDUAS dy3 uo wny [1,om ‘wesdord ay jo Buruuidaq sy je

' (ONAS O ‘ONETI4 100AIS)TI 3°s

aur| ay3 3utppe £q ¢ 281y woij 13 398 [[ed om 1

€ 1dey> O/1 3

8

‘say Ien8a1 y3rm asn
10§ 31 PAPURIXS U9AD darY suonejudwRldwI Suiog ‘suionerado 30143p Snodue[[EdSI Auew 10§
1 asn ‘Iasamoy ‘suonejuswaidun waysdg XINN (€661 08ey] sao1A9p SINVHILS YHm Surreap
10§ uoIsUBIXa ue se Afuo uonedyads XINM AASUIG Ay ut papnpul st uonouny 3907 Y],

SO Jt 2S[@ SunJIaWOS 0113 UO [— [SUIId

f¢++ “‘3sambas 3utT ‘sapapy QUT) TIDOT 3JUT

/*» SWYEULS ISX x/ <y-sidoxls> opnIduTH
/x XQUTT pue gsd x/ <Y T3IDOT/SAS> SpniduT#
/% A W33ISAS x/ <Yy-'pasTun> 9pnIoutH

(-suonouny ajyeredas yjim suonerado
O/1 [eunuIay 3y} _Da39[d91 sey 'XISOd ¥eu 29s [[,2m ‘gl 1apdeyD 03 398 am udaym)
‘gonOUNy SNy} JO 13817 159831q a3 sem (/] [PUTWLIDL, "T3I00T ue yym paypads Suraq

dn popua Ajrensn 1ojde’ St Ul suorPUNy 13430 Y3 Jo auo ursn passaidxa aq 3,upinod
ey Sunpduy -suoneradc O/1 10§ [TeYdIed ay; ussq skemfe sey uopduny 13D0T YL

uoloung 1320t

‘10}d1I0Sap
e st adid B ynm aaey am [[e DUIS W T'6T uondag) sadid Bunpojquou dqUISIP M
Uaym TIUDF 10§ pIsu IdYjoue 338 [,9M Y uado ayy 10y 103dudsap ay3 Ajuo Surmowy
q03duosap e jo sanzadoxd ayy Ayrpowr ued oM ‘TIUDI UM o[y ayl pauado [[ays Y3
aouts “pauado st 3y Ay} usym Sefy ON XS0 oy} 198 J,ued 9 103dLIOSIP JeUy) UO [[RYS 3
£q pauado sem yeyy 9[y Y3 JO duIeU A Surmou™ 943U ‘(Indino prepue;s) 103duidsap
e uo sajerado weilord InQ "T3IUDF 10§ paIdU A} 39S am ‘opdwrexa STyl Yyipn

O 3]y 9Y3} O3 9}1IM dM dWh AI2A3 SjUajUO0d S I3[© sa;epd\‘.l yoym ‘Sefj ONAS O Y3 Ytm
‘08 Aes 9M USYM SIUSU0D §,9[1 © arepdn yorym ‘cukselepd pue ouks3 aredwo)

SWISTUBYDAW UOHBZIUCIYOUAS SNOTIEA Sursn synsax Junun X GO PN ET°E a8y

FANA ¥6 10 oUAS] Aq PAMO[0] 135 ONAS' O U3IM SIp 03 93T I
[49 4 1€°¢ 110 ouksg Aq y?9MO][[0] SIp 0} 83T IM
8V €96 €10 198 DNASA O YIIM [SIp 03 93T IM
ovvl 96t <00 3[y 3 'SIp 03 23T IM [EWIOU
1 X4 6.0 900 T1nu/ASpP/ 03 93TIM
tj)uoaas) (spu023s) (spuo29s) wonesado
awn 201D | NdD wAsAs | NdD s ‘

*3Uop 3q 0} [Sem YI0M 3] K13 ‘duksy
paf[ed am ey awm ayy Aq 0s ‘[) 03 Ejep MaU SunuIm 219M M S¥* JSIP 0} ejep
uapum Afsnoraard paysnpy wlsAs Sunerado ayy 1ey} A[I I3 DUSIIHIP' AqeInsesat

SL'e

€8 uogoun, 13201 GI'€ Uond3g

"I'XISOd 30 37ed J0u S1Y] *6 SLRIOG PUe ‘€01 X SO Y’ ‘TTH'C X0 ‘I°T'S
(Sg21] {00q SIy} Ut paquSIp swaisAs ay jo e 4q paproddns st] “waysAg XN YoIeasay
3y jo uoyipg g oy wr pareadde pue gng wop Aq padopasp sem amyesy p3/Asp/ YL

“uado st u 103d113sap ey Sununsse
‘u 103didsap Suneorydnp o3 jusjeamba st u/p3/asp/ oy oy Suruedp -uo os pue ‘z
‘T ‘0 pawreu sa[y aIe SALUD 3SOYM P3 /ASp/ paureu £1030211p e 3p1aoid swajshs 1lomaN

p3/Aep/

"S[euTuLIa} opnasd Jo saInjeaj padurApE J) SSIIOL IM USYM

L'61 UOHD3G Ul pue ‘MOPUIM S,[EUTULId} B JO SZIS JY) 13S pue Y}dj 0} Z['§] UOIAG Ul
‘Wa)sAS SWVHILS 243 9qLIDSIP aM USYM §§] UOHDIG UT uomduny TI00T ayj asn ap

"T300T 3ursn suonyerado I1ay; $S300€ 03

u3aq sAem[e sey sad1Adp 3saY} A[puey 0} Aem 3SIISE3) OS ‘(U0 OS PUE ‘YS9ST ‘93 TIM

‘peax) 1apdeyd ay; ur suondUNy 1930 Y3 JO s} ut passardxa A[ises st suonerado asay;

JO SUON "3I] 3y} pue ‘SpI0OdAI IO SI[Y JO Jaquunu payads e I9A0 premioy ddeds ‘odey
e purmar ‘adej} e uo SyIewr 3[Y-jo-pus LM 0} sn mojre suoperado adey Sew ayf

suonerado T300T (J§gIdL] UOWWIOY) HI°E aInSig

%474 <Y wodA33/shs> XXXOIL | Q/] [euruiis}
09 <Y OTYD0s/shs> XXXOIS O/1 31908
11 <y-otiw/shs> | xxxOIIW | O/]3de; Sew
6 <y'OTITT3I/SAS> XxXX0Id O/131Y
9 <Y-19qeIqsIp/sdhs> XXX0Ia s[eqe[ysip
s13ao0T sawreu
JO Iaquunp 19peoH jueIsuoD Aso3ayed

‘$1°¢ 231 ur pazuewwuns
are (Jsgaa1] ut pajioddns spueuwnuod 13007 dMauag asay 10§ s311083)ed Ay} JO SWIOS JO
sa[dwrexy "Sa01A3P JO SISSE[D JUSISFJIP L0 SPULWIWOD [300T duauad sapraoid “Taramoy
‘WAjsAS BY] SPURUILOD T3IDOT JO 39S UMO S}l QUYP URD ISALP 3DIASP yoeq

19peay <Y - soTwxa3> ayj axmbar

e ‘I'XISOd 4q paymwads suonerado d1seq ayy puokeq O/ [PUIWIS} 10j SPUBUIWIOD

13007 3y} ‘oidwrexs 104 -parmbar are sispeay oywads-ad1a9p [eUOHIPPE ‘A[fEULION
JIOsy uoyouny ayy 10y parmbar sivpeay sy Auo moys am ‘adAyojord smp ug

2INPNAS

e 10 d[qeLrea e 03 1ajutod e Apensn s 31 pue ‘Juawm8ie arow auo AJuo s 213y} 1849MOY
‘AqrewoN ‘syuswmre Jururewaz ayy 105 pasn st sisdipa ue ‘aed£io101d 3 Og] 3y} 104

“I9pEaY B WOl SWeU PSUTISP# B sAemle sT juswmBIe puodas ay adurs

‘I9pew 3,us30p [1ejRp sy, ‘Buot psubTsun ue se juswnSre puodas ay} arepAp £OL
X SO 28N Pue ['7'S SgdLd "T'XISOd 03 Spuodsaiiod moys am jeyy adAjojord ayj

9l'e

¢ 1adey) 0/1 31

8

-adueurioyzad uonesrdde uo 199)33 11BY) PUE SIP O} BJep USHLIM Ysn[j 0} Kem [e1aAas je
PaY00] OS[e S\ 9 & pear 03 parmbai awm Jo Junowe) U0 SIZIs /] SIOLIEA JO 1033
3y} je PANOO[aM ‘23Tam pue peax A[uo Suisn) oW Y} ORI [[ed UuBISAS e saxoAUl
S3TIM IO peSI DBd 3SNEddq SUORdUNy (/] PaIopnqun 3yj pa[[ed 8)o e IsYL
washg XINN 2y Aq pepraoid suopoung (/1 dtseq oYy paquosap swy 1apdeyd snyL

Arewiwng

-ssaur[ueapd pue Anuiojun premoy dajs e st p3/asp/ 3uisy "uondd sul[-puewIIod
IyIoUE JO JE}S 3 SI[SY0O] M se [y isIy 3y se - Ayads m i swapqoxd
osfe are aray], ‘surerdard Auew ojur 3daid sey jeyy a3pnpy e st indino prepuess 1o ndur
pIepue}s ay} 0} 19joI 0 JudWNSIe SUI-PUBWIUIOD € St - JO Juruesus rewads ayy,

zd1 | €113 0/P3/ASP/ TSTTF 3I€0 | TTTF I93TT3

I9]US UED 9M PUE ‘3BD WOILJ PIAOWAI 3q Ied - Jo Surjpuey
erads ayy ‘payroddns st p3/asp/ JI "€9TTI WY (zo113 uo weidord x93TTI
a3 jo ndino ayy) ndur prepuejs s} IxdU ‘TSTTI speal 3ed IS -a[durexa ue st

adT | €9113 - TSITF 3ed | ZaITF ISITTI

puewwod ay], Mdur piepue;s Uesw 03 Sy} S3sN pue - JO WUy mdur

ue 10§ syj00] Afeoymads weidoxd (1)3eo oy ‘sdurexs 104 ‘sawreujed 1PYI0 S IBUUEUI

sures ay} ur yndino piepueys pue ndur prepuels s[puey O3 sjusum3re aureuyied
asn.jeyy sweiSoxd smofe 31 “[[YS Sy} WO SI SIY PF/ASP/ 33 JO 3N UTRW Y],

'z/P3/n°P/

pue ‘1/p3/A8p/ ‘0/p3/A0P/ O} J,uaIEAmba are sauleuq;ed 9saY], ‘1I9p3s/a8p/
pue ‘3nopis/aep/ ‘utpis/asp/ saweuyjed oy apraord swdyshs awog

-a[dwrexa 10§ ‘1 /p3/s8D/ S jusumSie sweuyied

oy} J1 J{IoMm [[us 03 e s[ed jeyy weidoid e smoffe sy, ‘usdo 0} [[ed e Ul IY¥EED O
Suifypads se [jam se ‘Juaumnre sureuyied pI/ASP/ B UM 1BSID [[Bd OS[E UEd I\

‘D3 0} JLIM },Ued [[IS M 'SPIddINs

! (dM@d O 'w0/PF/A0pP/u)usdo = PI

[1e2 ay3 pue ‘apout uado ay
s210uS1 WaISAS) JT USAT 'P3F UO peal AJuo ued am ‘AJuo-pear pauado sem 10ydurosap
jt ‘oidwexa 104 ‘(8¢ am3ty) Anud d[qe} A[Y Swes Iy} d1eYS DI PUE (s103d110sap a3

‘(0)dnp = p3

0} yuaeamba st usdo snoraaid sy} asnedsg
-pauado A[reurdiio sem (ased sty ut ‘ndul piepuess) [l PIdUSISJAI Ay} USYM pasn spowt
a3 JO 12sqns e 3q 31 jey) armbai s1ayo searaym ‘epou payads ay azoudr swajshs jsowr

! (spou ‘,0/p3/A0pP/4)uado = PI

[e> uonduNy A} U

LI'E

S8 Arewnuung ' LT'¢ uond3g

‘siy3 AJu1aa o3 weidoxd
©)M (3[Y 3 Ul ejep Sunsixe aoefdar 03 3o9ST asn nok ue). ;xeesT Susn opy ayy
ut arsymAue woyy peax s nok ued ‘Seyy puadde sy yiim ajuIm-pear 10§ smeusadonofj 9¢
(74311 03 3] W0y saUT] pueIWOd 1191y $$9001d S[[AYS Sy} JUTL])
®TTIINO < TXR<Z 3no-e/"
T3<Z STT33INO < Ino-g/"

SpURLUWO) OM] Y] UIBIMI3q
SOUIIRYIP 33 S 1eYM 718ty 103dLIdSIP se [y awres ayy 03 17181y 103d1IOSIP 10911par 0) SAes

n8ipz<nip
1I01RI0U [[9Ys WIO) pue ‘[[3ys urede-auinog ‘[[9ys aWInog syl §'¢

-arnyo1d awres auy meIp pue ¢ SI PJ ey} SWNSSe Uy [
'zdnp 03 [[ed> yoes yym Anus o[qey afy Swrpuodsaiiod ayy pue sargus 10jdudsap 991} Yy
03 suaddey jeym jo amyord e miIp pue [s1p3 Jey) awnsse ‘papasu S 153} 3T 9y} Aym d9s of,

! (p3)9solo
(z < P3) 3°T
‘(z ‘p3)ezdnp
‘(T 'p3)ezdnp
‘(0 'p3)ednp
ZSLIIE.ISO.Id SI’IOLIEA ul pE)A.Iequ uaeq SPl{ apoa JO aauanbas 811!MO[[O} E)ql y'g‘
(TALES 4 JO pupwiwIOd & Y3IM TPJ Uo
T3uS3 ue Aq pajoajje are s10}dLIdSap YPIYM (AALES JO puewIwIOd B 3IM TPJ U0 TIUD3F
ue Aq paiayye aie s10)dsap yomyay g a8y o3 requs ‘amjoid 3unnsar ay; meiq

! (sberzo ‘sweuyjed)usdo £p3J

‘(1p3)dnp = zp3
! (sbe1zo ‘sweuyzed)usdo = 1p3

It

'S[[ed> uonouNy 321y3 SUIMO[[0F Ay} $aINdaXa ssad01d e jeyy awnssy g

"APpoa110d
SI0LI3 S[puey 0} 2INS 3¢ "UOWDUNJ TIUDF 3y} JUI[[ed JNOYIM ‘T['C UORDIIG Ul PIqLIISIP
uonduny zdnp oy} se dIals dures ay} swiojiad jey; uonduny zdnp umo MoK UM TE
‘uterdxq ;parapynqun
Ajrear 1aydeyd snp ur paqupsap suonduny ayy are ‘apy YSIp B Supum 10 Buipear uaypy 1€

$9S1049X3

“8unydo[p10d31 10§ T3UO3
pue ‘wajshs O/1 SINVAALS 94t YiM TI00T asn [[,om araym p| sardey) ur suonouny
953U} JO UjOq 0} UINJAI 9\ 'SUOHDUNY TIUDJF Pue TIDOT JY) PaqUIdSIP OS[e apm

JX3} 3y} UL I19)e] SAINJONIS ejep say)
03 wIn3al [,5M "say uado jnoqe uopeWIONUT dreys 0} [PWIAY Ay} AQ Pasn saIndNLs
BIEp i} je pXOO[Os[e 9pp Iy swres oYy djeard sassadord aidnmuw usym pue apy
awes ay} 0) puadde sassadoid s[dnmw usym paonponur azom suonerado SO}y

¢ 1a1dey) O/191d 98

L8

© SI 9[j PAWRU Y} USYM Jng ‘3e3s 0} IP[ILUlS ST UoRdUNny 3e3sT YL *sapajyf 10)dL1dsap
ayy uo uado Apeafe SI ey} S[Y} INOJe UOHRULIOJUT SUTe}qo UORdUNy 1e3s3 Y[3y
paureu 3y} INOqe UOTFBULIOJUT JO SINIONIS B SUINAT UOKDUTY 3BIS 3Y) ‘uvuyvd e USALD)

IOLID U0 [— O J1 (‘uInjal 3a1y3 [V
! (fng 30TIISDIx RIS IONIAIS ‘awvuljpd IDTIISSI, IEYD 3ISUOD) JBIST 3UT
! (Jngx 3®3IS 300XIS ‘sapo)y IUT)IeISF IUT

{(fng 10TIISVIx JEAS IONIIS ‘owpuypd 10TIISDIx IBYD 3ISUOD)JRIS 2UT

<y-3el1s/sAs> SpniouTH

‘uInjaz A3y} UOHRULIOJUT
oy} pue SUOBOUNy 1B3S 3AIY} S punole sudd mydeyd sy ul UOISSMOSIP YL

suolnound 3Ie3isT pue ‘ae3sy ‘yels

-Ayprerany 1030211p © ySno1y) spusdsap et uondunj e dojaasp am pue
‘sauopantp uo ayerado jey) suondUNy dy) Yim 1aydeyd snp ysiuy ap Uy orjoquiAs
pue wajsAs Ay XIN(] € JO JINONIS 3Y) Je [Ie}d9p I0W Ul JOOf OS[e [[,9M U0 0 pue
‘suorssturrad oy a3ueyd ‘1oumo ay} d8ueLp [SANUINE ISAY} AJTpour Jeyy suonduny 3y}
JO |oea 3quISAP OS[e [1,9M ‘ss2001d STy} U] I[y € JO sanqLie i [[e 3e Bunyoor ‘amyonis
1e3s oy} Jo JAqusw yoes ySnony o3 pue suonpunj 3els P YIM HEIS [[PM O
e jo sonaadord ayy pue wajsAs I[Y Ay} JO SINJEd) [PUOHIPPE Ju YOO MOU [[IM 9l ®
Sunum 1o Surpea pue a1y e Suruado—saqy rem3ar 10§ O/ PUNOIR PIAINUSD UOISSNISIP
oyl 'O/1 wioydd jey) suonouny dISEq By} PaIdA0d om 1o3deyd snotaaxd ay3 uj

uonaNposu|

sol10jodllg pup so|l4

(4

Apoanp a31m ued [pPuIeY Y3 Auo g ‘A1039311p 3Y} JO SIUJUOD Y} Pear ued ay
A1012311p ® 10§ UOISSTWIIAd peas sey 1o ssadoxd Auy “sapy asayy uo uonewIOUT
03 s13jutod pue S3[y ISYJ0 JO SIWERU By} SUTLIUOD eyl 9y v o[y Aroparq g

"BJep pue 3xa} s, weroid e peoy 03 sraym AJnuspt o) [BU13 Y3 smoj[e
1B} JEULIOY B 0} ULIOJUO) SI[Y J[qrHIdaxa ATeulq [[y "JeWLIOf S} puejsIapun jsnu [PuIay
3y ‘wrerSoid e andexa o], ‘sa[y sjqeInvexd Arewq yym st sy3 0y uondadxs ajqejou auQy

: "3y ay urssanoxd
uoneotidde sy 03 Yo st oy remSar e JO spudtu0d 3y} jo uonejardiayur Auy
‘ATeulq 10 1x3} SI ejEp STy} IayIOyMm [PUI XIN[] 343 03 UOLOUNSIP OU ST I3[
'LLI03 SWIOS JO ejep SUIeIU0d YoTYMm ‘a7y Jo 3d £} uowrwion ysow ayy -ay remSay |

:axe sad43 ayy ‘sopy jo sad4y
[EUORIPPE 2I¥ 2193 3nq ‘SaLI0PAITP 10 S3[Y Ie[N3DI IAPIS A1k wWAISAS XIN(] © U0 SI[y
IS0 "S31103221p pue sa[y Tendai :1ej 0s $3[Y JO sadA} JULIAHIP 0M} JNOqe Pav[e} 3A,9M

sadAL a4 €y
‘911 © INOQR UOHBULIOJUT Y}
[T uIes| 03 ‘puewriod - sT a3y} Ajqeqoad st suonduny 3e3s ayj jo 1asn 3s9331q ay .
"I B JO SIINqLIE 3} SUIUIEXD 0} INIONIS ST} JO JOGUISUI Ded y3noxys o8 [1,9m
(87 uondag 99s) adA) eyep waysAs aantwid e £q paygpads st Iaquiawr yoes jey; 30N
‘uonedyadsg XIN S[BUIS 33 Ut SuoIsua)x3 ISX se pauyep
are A9y, 'I'XISOJ £q pazmbai jou aie SP[®Y S3O0TQ IS pue ‘@zTSYTq IS ‘ASPI 3§ Y]
L .
/+ POIBOOTTE €}O0TQ ASTP JO I2qUOU x/ !S300TQ IS 3 UDHTQ
/% 3ZTS YPOTq 0/I 3S9q x/ 9ZTSYTq 38 3 9ZTSHIq
/x ®Bueyd snjels o{TJ 3SeT 3JO SWrl 4/ ‘swT3o 38 3 ewty
/% UOT3eDIZTIpPOWw 3seT JO SWT] x/ ‘swTjw 3s 3 awrj3
/x SS®dDE 3SET JO BWIl 4/ ‘awtye 3s 3 w3l
/% S9TTF 1eINbax 103 ‘S393Aq UT 92TS x/ ‘oz1s 3s 31 330
/+ I2umo 30 qI dnoab ./ ‘p1b 3s 1 ptb
/+ ISUMO JO QI I9SN 4/ ‘pIn” 3s 3 pIn
/% SMUTT JO I9QqUNU »/ !NUTTU 3§ 3 HNUTTU
/+ S®TTI TeTtdeds I0I Isqunu s0TASD x/ {ASpa 38 3 asp
/+» (W93sds S1TJF) Ioqunu o0TASD x/ ‘aBp 38 3 asp
/» (Id2qUnU TeTISE) IOQUNU SPOU-T 4/ ‘out 3s 3 our
/» (suorsstwiad) spow 3 odA3 o713 «/ !opow 3s 3 spou
} 2eas 3onags
1] Y0O] P[nod 31 nq ‘suorejuswayduur
Suowre 1ay1p ued anyonns 9} JO uontuyap Y], ‘fnq Aq 03 pajutod arnjonis QY3 Ul sy
uonduny sy, Ajddns 3snwr am yey; amyonys e 0 eurod e ST Juawn3re puodas ay],
('9T°F UOnOAG Ul [rejap 10w Ut SYUI] dTjOquIAS 3qLIDSAP I “Aydrerany K1030911p €
UMOP J[EM 3M UYM [} UOTIIG Ul 383S T PIsu [[,apM) ur orjoquuAs ay Aq pasuaiajer
9l 9y} jou uij droquiks Ay} noqe UORRULIOJUT SUINJSI 3B3ST “NUI[DI[OqUIAS
¥ 1o3dey SOLIOIDII(] pue sa[L] 8g

*SaYy se s30alqo asap Juasardar yooq
ST} UT passnastp wdlsAS XIN(Y} Jo suonejuswa[dwir snoLiea i} jo SUOU ‘I9AIMOL]
‘g1 191dey)) ur passnosip are spalqo Azowawr pareys pue ‘saxoydewds ‘sananb adessajy

<y-3e3s/sis> ursonew adAy Dgr Ty 2anSrg

102(qo Arowdw pareys | () WHSSIZAAL S
azoydewas | () WISSIFAAL S
ananb a8essaw () ODWSIEAAL S

193lqo jo ad4g, oeN

"aInoNI3s 3e3s 9y} 03 Ja3urod e st juswngre Jdy) Jey) ul 1 an3rg
Ul 3SOY} WIOIj TP SOIdBW 3say} ‘Juswndie ue se Idquisw spoul 3s ay) Jumyel jo
pealsul amonys Je3s 9y} woiy 199(qo HJJ jo 2d43 ay3 auTwriajap 03 sn moj[e 7'y am3rg
ur umoys somew 3y ‘sd[y se ‘saroydewss pue sansnb o8essawr se yons ‘spalqo

(DdI) uoneaumwwod ssadordisjur jussaidar 03 suonejusws[durr smofe T'XISOd

<y-3eis/sks> ur sonew 3adAy Iy 1§ 28y

1900s ()MD0SSI” S

Yur[oroquids ()ANISI S
Odrifoadid | ()odI1dsi s

a1y rewads yo01q ()MTEST S

ary rewads 1apereyd ()¥HOSI S

a[y A1030011p ()¥IaST s
a[y rensax ()oFASI S
aqyy o adAy OIdeIN

"2INJONIIS 323S Y} WOIJ JOqUISW SPOoW 1S 9} ST SOIDBUW 3SaY}
3o yoed 0} juswmBre Y], ‘1 2mBry ur UMOYS SoIdeW A} YIm 3dA} [y Sy} sUTwIRp
UEd A4 2INONIS 3B3S 9Y) JO JAqUISW SpOW IS Ay} Ul Papodua st a[y e jo adA} ay,

"9T"H UONDIG UI SYUI] d[OquIAs

noqe a1ow (e} o\ -3y Iayoue o3 sjurod jeyy oy jo adAy v url drjoquifg
‘g1 193deyD) ur uonEdIUNWWOD $$3001d 12U 10 $13X208 asn I “1soy J3uls

© U0 $3553001d U39M19q UOTIEDTUNUILIOD YI0M]SU-UOU 10 PIsn aq OS[e Ued 39408
Vv "sessaco1d UsaMIaq UOIIBIIUNWIWOD YIOMISU 10§ pasn [y jo ad4} v 199205
"G'GT UONIaG Ut SO 2quosap ap -adid pawreu e pajfed

SOUIT}AWOS §,3] "$9s89001d U9am}aq UuonedIunuwod 10y pasn a[y jo adA} v OdId
'sa[y Te1ads 1a30ereyd 10 SIY

[e1dads Y20[q I9YIIa dIe WA}SAS B UO SIDIAJP [[V "SIIAIP O3 SHUN pazis-dqerrea
ur sseooe O/ patepnqun Surpiaoxd o[y jo adAy v oy Tewads 1sperey)

"SIALIP YSIP SE Yons SIdIAP 0}
S}IUN 3ZIs-paxy Ut ssadde /] parayyng Surpraoid apy jo ad4y v a7y Tewads yoig

‘A1032311p ® 03 sadueD ayew
0} 193deyp SIY3 UT PaqUIdSIP SUOTOUNY U} SN JSNUI SIS0 "3[Y A1030211p B 03

68 sodAL apd

€% uondag

MUTT DTTOoquAS :woIpo/Asp/

Tetoads oo1q :po/ount/oqeﬁzeq/oan/o:soq/tsos/Aap/

Tetoads 1o30eIRYD :A33/A8D/

39300s :boT/Asp/

O3T3 :13d3TUT/ASP/

A103091Tp :033/

Ternbaa :pmssed/ois/

woapo/A8p/ pa/ount/oaaﬁze:/oan/onsoq/;sas/Aap/ <

\ 4£33/a8p/ Bot/asp/ T323TUT/A®P/ D39/ pmssed/o3s/ nore/* &

st ¢'% 231 wouy yndino sjdwreg

jusWNZ e JUI]-pURWIWIOD Yoea 10§ 3y joadfy g ¢pamSiy

£(0)31X®
{
{(x3d ‘,u\sg,) Faurad
‘uxx OPOW UMOUNUN xx, = x3d
osT19
{ya39yoos, = 13d
((Spow 35 3Nnq)ADOSSI S) IT @sTe
fudqUTT OTTOoqWAS, = 13d
((9pow 3s°INQ)YNISI S) 3IT osTe
!llo;I;ll = ‘I:I'd
((9pow 3s°3INnQ)04TdSI S) IT 9STo
!yTetoads yoo1q, = x3d
((Spow 3s°3Inq)NTASI S) IT osTe
‘wreroads xsjdexeyo, = x3d
((opow 38 INQ)¥HOSI S) 3IT oSTo
{WAxo3oeatp, = 13d
((Spow 3s°INnq)¥IASI §) JFT osT°
f,Ietnbex, = 13d
((Spow 38" 3INQ)DFISI S) 3T
{
!{anuTt3uod
! (4I0x119 3€3ST,) 391 132
} (0 > (3nqz ‘[T]aBae)3e3sT) 31
{([t]abae ‘, :sg,)33utad
} (+#+1 foBae > 1 ‘1 = 1) I03

fx3dx Ieyo
‘Ing 3e3s 3onais
‘T jut

}

([1abxes zeyo ‘obae jut)urew
aut

WU-onde, spnroutg

JusWINSIe 3UI[-PUBLIWIOD YOra J0F 3[y Jo ad4y oy syund ¢p a8y ur weaBoxd ayg

a|dwexg

p 1adeyn S3LI0PBIY] pue SaL]

06

asay; ‘AfjeutoN “ur S0[am uaym 3y promssed sy ut A1jus 1o woxy ude} aIe

Sp[oy omy asay[, ‘o1 A[[ear am oym Ajnuaprt (O] dnoid [ea1 pue (]| 19N [edI YL e

ssadoxd yoea ym pajedosse s(J] dnoid pue sy 19s) §F 231y

ar-dnoi8-jas pases

suondungy 0axa Aq paae
Houny qPoAes (1]-19sn-19s paaes

s dnoi8 Areyuswarddns
syoa uotssiuLIad ssadde 31y 10§ pasn i dnoi8 aandays
(] 1osn aAndjJe

i dnoig [eax

are AJjeaz am oym [29sn [eatx

"¢ 9131 UT UMOYS 21k 3s3Y L, "} YHM Pajerdosse S(J] 10U 10 XIS sey ssadoid A1aayg

ar-dnosn-jog pue ql-4esn-1dS v

sad £} afyy yuasagIp jo sa8ejuaniad pue sjuno) ¥y amB1g

000 l OdId
€00 69 39008
<o e Teads ydojq
10 Va7 1eads 1apereyd
167 w9 yurp drjoquis
g6'8 L10°€T K10pd211p
%788 | 9S8'9TC a1y re3ar
a8ejuadiag | uno) ad4y apig

‘17§ UO1O3G Ul MOYs am jey) wierdoid ay3 woiy paureiqo sem ejep sy
“UONE}SHIOM Iosn-d[SUIS B Se Pasn ST Jey} Wa)sAs xnur] e 10J sa8ejuaoiad pue spunod
ayp smoys ' amBy] -adf Ay yoes jo are wdshs uaAtg e uo sa[y ay) jo adejusdad
jeym a9s 03 Sunsatajur I §1 Jnq ‘Jueurwopaid are sa[y Ie[n3aI jeyy pres 24,.9M

(41a41°S == (IWAT S % (Spow))) (9pow)YIASI S SUTIP#

1] Suryjaowos paulyap OIdeW YIASI S Y PUY [[,2M ‘B[1 SIJ} SUTUIEXD
aMm J[<y-23e3s/sAs> 3 3y} U SJUBISUOD PaJe[al dY} pue MSeu Sijj suop SwaysAs
ISON "XXXJ4I S oIt SIWEU 3SOYMm SJURISUOD Y} UHM Jnsal a3y} aredwod uay; pue
IWAT S NSeu 9y} YIm an[ea spou 3s ayy NV A[[ed130] 03 pey am ‘pedjsu] "so1dews
xxxsI_ S oy opraoid JLUpIp WRISAG XIN(1 dY} JO SUOISIdA A[rea “Ajrestio}sty

a ‘0IdRW MDOSSI S 9y} JO UonIUyap dYyj apnpul
0} EDUNOS AND Suysp SN am ‘WdisAs xnur] e uo wreiBoxd snyy oprdwod of,
"$UT] JIOqUIAS 99 I2AU P[NOM M “UOHOUNJ J©3S A} Pasn am J] "SHUI]
JTOqUIAS 303)9p O} UOWOUNJ B3 S JO Ped)sul UoHoung 3e3ST Ay} Pasn Areoyoads
aAey ap (Bur xeu ayp uo ‘< ‘dwoid A1epuodss s} YIm sn sydword uayy [[aYs
Y] "aul[JYIOUR UO PUBUIWIOD 3Y} SULISIUS SNURUOD 0} JUBM dM Jey) [[9Ys 43 Bur
‘SUI] PUBWIWOD }SIIJ 3U} JO Pud Y} je Yse[Sdeq e parsjud Apordxa aaey am ‘a19H)

16 @l-dnoin-jag pue I-1950-19S . $F uondIg

‘9§ 2In31 ur umoys

aIe 9s3Y], 'SaLI033}eD 3AIY} OJUI PAPIAIP ‘3 Yoea 10§ SjIq uorssiuiad auru are 313y [
'suotssturad ssaooe Suraey se safy zemSar jo Aquo syury
ardoad Auejy “suorsstunad aaey—uo os pue ‘sa]y erdads 1a1oeIRYD ‘Sa110303ITp—sadA)
oy oW [V JdIIed paqudsap am jeyy sadAy o[y oy jo Aue ueswr am ‘apf
Aes am uayp "3y Y3 10§ spq uorssturrad ssadoe ayy S3POdUD Os[e anjeA spow” 3s Y],

SUOISSIWIdd SS90y 9|l

‘AIDSI S PuURQINSI S SHULISUOD
oy} jsutede pajsa} 9q UEd S)Iq OM} ISAY] °IN[EA Spow 3§ S,3[IJ Ay} Ul paurejuod
are 31q (q[-dno18-13s 3y} pue J1q ([-19SN-}3S AY} ‘UOHDUNJ 1238 ay; 03 Suruinyay
g 13pdeyD ur [rejap arour ur swrexdoxd jo sad4j asayy SSNISIP [1,9M “A[[nyared
USHIIM 3q Jsnur 31 ‘suolssiuiad exjxd sawnsse A[[ensn 1asn I9j0 aWos 0} (J[-19SN-}as
Buruuny st jeyy ssadoxd e asnedag resniadns ayy Aq Ajuo 3[qeIIM 3q P[NOYS Jey) SI[y
‘mopeys/o3s/ 10 pmssed/o3e/ soyie Afpestd£) ‘oyy promssed ayy 03 promssed mau
oy aam ued wex3oid sy yeyy os parmbai st siyp “wesSord (j1-19sn-3os e st ‘(1)pmssed
“promssed 12y 10 sty a8ueypd 0y auoLue smoqpe yeyy werford wRlsAg XIN(a3 ‘odwexa
Ue Sy 9y a3 SaIndaxa jeyy ssa001d ayy Jo (O] 19sn [eal yy jo ssajpredar suaddey siyy
sa3a1an1d 1asnuadns sey 11 ‘ssadoid e se Suruuni st 3y weidoxd yeyy a[iym usyj “9s s

319 QI-19sn-335 S,31Y Ay J1 pue Jasniadns ayy ST 3[1y 3y JO Toumo a3y i ‘Ojdurexs 104
11q (J-dno48-33s 343 pue 31q (J]-4251-335 Y3 PaYEd dI1E
PIOM apow .97y 2y} Ut s}iq om} asay], ((PTE 3s) a[y ayy jo 1oumo dnoid ay aq 03 (I
dnoi3 aagoaya 3y SISNED Jey) PIOM PO S,3[1 Y} UT J3S 9q ULd }1q Iayjoue ‘Areqrurg
. (PTNT38) Ay 3y Jo 1oumo ap 3q 03 ssa001d ayj Jo (T I9sN IATVIYD Ay} 39S “PAINIIXD
ST 3]y s usym,, sAes jeyy (Spow 3s) pIom apow s,3[y ay ur Sepj [ewads e 305 03 SISIX3
Aynqedes a3 ing -qq dnoi8 [esr a Ajpensn st (q dnoi8 JATIDJS A} pue ‘(J] I19sn [eax

a3y Arensn st ssadoxd s Jo (If 19sn 2AndRYS Y3 ‘ay wesBoxd e sndexa am UayM
Iaqusw pT6 38 3y £q ‘reumo dnoil ayj ‘amyonns 1e3s sy jo saquisw

PTN 35 3y} 4q paywads st oumo ay 1oumo dnoig e pue 1aumo ue sey o[y A1aag
‘1 dnoid [ear ayy
sfenba (1 dnoi8 aandage ayy pue ‘(1 19sn [ea sy sjenba I 9sn 3A1303a 3y} ‘A[[ewioN]

"21njedy sty sproddns uonejuswardur ayy BYPyMm
395 0} ‘DuIuNI Je Judwngre SAI” AEAVS OS aYi YHm JUODSAS [[ed ued Jo swy andwiod

18 SAT QAAYS XISOJ IUPISUOD 913 10§ 3533 ued uonesrdde uy "XISOd JO SUOISIdA 19p[O
ur feuondo aq 03 pasn £ayy “[*XISOd JO UOISIBA 10T 34y yim parmbaz are S paAes sy

"11°8 uondag

Ul Uuonouny pInass aly aqudsap 9M USYM SIN[EA PIARS OM] 3S3Y) JO UORIUN)

93 2qUOS3P IM "PaINdaxa st wrerdoid e uaym (1 dnoid aansagge sy pue (Jj 19sn
2ARY9JJ3 3y} jo sardod ureyuod (qr-dnois-jes paaes pue (J[-1asn-jas paAes 3yl e

('g'1 uondag ur sy dnoid Areyuswaiddns pauyap

3M) "UONDAS JXaU 3} Ul 3QUISIP dM Se ‘suotsstutad $sadde A1y INo aUTWLId)RP
sl dnoid Arejuswsiddns pue ‘qp dnoi8 aapoaype ‘Al I9sn 2A1DRJD YL e

"11°8 UOI3G UT 9GLIISIP aM UYOTYMm “wdy} a8ueyd 03 ssadoxd zasniadns
e 10j shem are a1y ySnoyje ‘uorssas urdo[e Suunp adueyd j,uop sanjea

Sv

§ 1deyd SSLI0YAII(] pue SI[I

26

*K1030911p
1Y) UI SI[Ij S[qeINIaXS PUY IIASU [[IM [[BYS dY} ‘a5ed SIf) U] pa|qeus uorssturad
21NDIXD AARY JOU S0P Jey) A1010311p B Say1dads ‘0]'g UORIIG Ul PaqLIdSIP ‘Sjqeriea
JUSWIUOIIAUS HIVJ 9y J1 S 2dusrdjar Aroparrp jordur ue jo sjdwexs iayjouy

(-aureuaqy dyads e 10§ 0O 03 A1030311p Y3 Yd183s 0} Padu
ap) sseooe 03 Surkn are am jey; sweuyred e jo jusuodurod e st)t usym A1030311p
oyt y3nomyy ssed sn sjo) uorsstunad 9ndaxyg A1030211p Yy Ul SIWRUL[Y dy} [le
30 3s1] & Surure3qo ‘A1030011p 3y} pear sn s3] uorsstuiiad pesy "sSury} JUSIHIp uesw
A1010011p € 10§ UOIssTwIad ANdexd pue A103daIp e 10§ uoisstuiad pear jeyy AoN

Y oTpas/ Iy
a3 Suruado 1o 03 [eORRUSPI ST 3] “pauonUAW A[[edyads Jou ‘paridur Buraq A1030211p
yuarmnd ayy jo apdwexs ue st SIYL Y OTP3s [y ayi uado 03 A101aIrp JUSIIND
a ur uossturrad NIIXD PASU M USY} ‘OPNTOUT /IST/ ST AIOPSIIP JUSLIND dY3 J]

"Uo 0 pue
‘ajuam—pear ‘Ajuo-pea1 ;1 uado 0} Sutkn a1,9m moy uo Surpuadap ‘J[asit 3y Ay} 10§
uorsstuzad arerrdordde pasu uayy sy SpNTOUT/Isn/ A1010211p B3 Ul uorsstutad
aMdaxa pue ‘xsn/ £1030211p ayj ur uorsstuirad ajndoxa ‘/ A1031011p ay3 Ut uorssiwzad
JINJ9X9 PIdu aM ‘U OTp3s/spnidut/asn/ [y Yy} uado o3 ‘opdwrexa 104

JIq YDIR3s 3y} PA[[ed Ud}JO SI A1030311pP
e 10§ 31q uoissiuzad Ayndaxd Ay Aym st SIYL -pariduur st 31 J1 “A1030211p JUDLIND
a3 Suipnpour ‘owreu By} Ul pauonUsW A1030911p Yded ul uorssturzad 9ndaxa aaey
1snw am ‘aweu £q oy jo adAy Aue usado 03 Juem aMm 43aaudym yeyy St O[T ISI YL e

“SUOLIOUIJ [ENIOR I} 2qQLIISIP

OM UM WY} 0} WINJ3I pue ‘DI8Y Way} dZLIBWWNS [[, 9\ "SUOHIUNJ JUSISHIP £q shem
SNOLIEA UI PIST 91e—a3JNddXd PUB ‘)M ‘peal—9y S ul $a110393ed 93113 YL

“PUBWILLIOD POWYD 3} Y3IM JUSISISUOD

aq 0} “4ayj0 pue ‘dnoi8 ‘4asn SWId) Y} 9N [[IM IOUMO JOU IS0 UEdUL 0} O SISN

PUBWILIOd POWYD 3y} s ‘SuIsnjuod st sy} ‘plom pue ‘dnoid ‘Ipumo se 2211y 353y 03

19§91 $00q SWOG 1Yo 10§ © pue ‘dnoid 10 b ‘(19UMO) 195N 10§ n £31ads 03 sn smof[e

‘s31q uorssturad duru asayy Ajrpows 03 pasn Aqesid4} st yonym ‘pueiiod ([)pouyo

QUL '3[y Y3 JO JSUMO Y} 0} SIS 9'F SIS Ul SMOT JIIY} JSIYJ Y} UL 4asH LIS} Y

<y-qeas/s&s> woyy ‘syq uoissturad ssaode afy dutu Ay 9y 2By

2INDIXB-1JO HIOXI S T
AJLIM-IAY}O HLOMI S
peai-1ay30 HIONI S
ajndaxa-dnoid d¥oXI S
apim-dnoid J¥oMI S
peai-dno1d daodI s
J)NJaXa-1asN ¥SNXI S
2)LIM-19SN dsnMI” s
peat-1asn ISQAI” S

r Gurueay] ssew apow 1S

€6 SUOISSIULID] SSAIY 3L G'p UOnIAg

'Je paxoo[jou are suoissturrad 1930 sy} ‘suorssturniad ssadoe
dnoid ayy uo Auo paseq patusp 10 pajueid st ssadoe ‘dnoid syeudordde ue oy s3uopeq
INg ‘31 9y} UMo jou s30p $sd01d By} I ‘A[Te[IUIIG -Je PIYOO[I9A3U ale suorssturiad
dnoi3 ay ‘suorsstuniad ssaode 19N 3yj UO AJUO paseq pPaTUIP 10 pajurid ST Ssade {4
dass) ayy ay3 sumo ssadoxd au jt jey) AjoN -ddusnbas ur paiy axe sdays moy asay

"patuap st uorssturad ‘astmIayiQ
‘POMOJ[e St ssadde ‘as st J1q uoisstwiad ssedde 1ayjo ojeudoxdde ayy j1 p

"patuap st uorsstunad ‘BstmIagIO) 39S st 31q uoisstuniad ssadde dnoid
aspeudordde ay3 J1 pamoyre st ssadde ‘apy oy jo qf dnoid ay; sjenbo ssavoxd ay
j0 s(1 dnoid Lreyuawarddns ay3 jo auo 10 ssadoxd sy jo (dnoig sandayse ap n ¢

"uo aq jsnuwr
11q 9INdax0-13sN 3y} ‘311 Y3 SUNNIIX3 ST $52201d Y3 J| U0 3q ISNUI JIq FLIM-IISN
oy} ‘Bunum 10y 3y ayy Juruado st ssavoxd ayy J| uo aq jsSnNw jiq peds-Iasn
ay} “Burpear 10y o[y ayy Suruado st ssadoxd ayy J1 jeyy UeIW OMm “1q uoIsSIULIIA
§52000 ajpridoiddy Ag -parusp st uorsstuiad ‘esimiayiQ) 39S st 31q uorsstuzad
ssaooe 1osn djeudoidde a3 J1 pamoqe st ssade ‘(3(y Yy sumo ssadoid
Sy} “31) 3P Ay} Jo I IBUMO 33 sfenba ssadod ay Jo (71 19sn dandeye Ay JI T

"wYsAS 91 AIUL 3y} InoySnoiy; urax 9913 19sniadns ayy saa1d
SIYL "PaMmoI[e st ssadde ‘(1asnuiadns o) () st ssad0xd 3y Jo (] 198N AR Y3 JT T

"SMO[[0J Se a1e [u1dy ay3 £q pawroyiad s3say oy,
ssadoxd ay jo sansadord are sqyy dnoi8 Areyuswaiddns ayy pue scqj JAIIDJJR OM] Y}
sea1aym ‘ay ayy jo sansadord are sqp oumo omy ayJ -paproddns 1 ‘ssadoxd ayj jo sc
dnoi8 Areyuswarddns ayy pue ‘(] dnoid aandaye pue ¢y 19sn 2A1dyJd) ssavoid ayy jo
SAI 2A19JJ2 3y} “(PTH 38 pue PTN™ 3S) J[Y 3Y) JO SIDUMO 3y} UO puadap sy e sajo[ep
10 ‘sajeand ‘suado ssado1d e awy yoes suniojrad [ouIdY 3y Jeyy S)S3) $SIVE Ay Y

37y Je[n3a1 e 99 0} ey OS[e 31 YL *(O'§ UOHIIG) SUOHIUNY DSXS XIS A}
Jo Aue Suisn 3y ay} ANO9XD 0} JURM M JI UO 3q ISNUI Ay © 10§ uorsstuiad ANOIXT o

FIOSH 1Y 9Yj 10§
uorssiuniad 231um 10 uotssiuniad pear pasu jou op 9z -d[y ayp Sururejuoed K103de1rp
Y} ur uotsstuirad 2ndaxd pue uorssiuriad)M pasu am ‘oY JunsIXe Ue PP O] e

*A1032211p 9y} ur uoisstwaad 3ndaxa
pue uoisstuzad 2)Lm dARY 9M SSI[UN AI0JOSIIP B UI 9] MAU © 2383 JOUUR) A4 e

‘uonduny
uado ayy ur Sey DNAAL 0 Ay AJ1dads 03 3[y e 10§ uorssruIad P3LIM IABY ISNUI P\ e

‘uonpuny uado ayy 10 s3eff YMAN O pue ATINOIM O ays :Sunum
10j 31y 3unsix ue uado Ued am ISYIBYM SIUTWLIBNAP 3[Y © 10J uoissiuiad OJLIM YL e

‘uonpuny usdo ay3 10§ s3ef YMAN O pue AINOQHE O Y3 :Surpear
10§ 21y 3unsixa ue uado Ued dM IYPIYM SIUTWLIIAP 3[Y © 10§ uorsstwaad pear oyl e

¥ 1a1deyd SOLIOIDAIN(] pue SILf

v6

IOLI3 U0 T— MO 1 0 :suInidy

! (apows 3ut ’aumqud; Ieyd 3SUO0D)Ssadde Ut

< pasTun> SpnIouUTH

(‘g% uondag jo pua 3y ye sdoys Inoj Ay} Ul JpaL YIm aa1paffa aderday) 'sqr dnoid
pue 1asn [eal Y} UO $}S3} S}I S3seq UONPUNy SS200' YL IY uaaI8 e $sa00e ued I9sn
[B31 33 JeY} AJII9A O} JUBM [[HS P[NOD II “J001 0} (QI-1asN-33s 3q St ssadoid e y3noy
uaaq -arnjesy (J[-dnoid-1as sy} 10 (J[-13SN-13s A} YD Sursn ‘as[2 auoawWos se Juruuni
st ssavoid e uaym [nyasn st sy, 'sq] dnoid pue Iasn [edl 3y UO paseq Aypiqissadoe
1593 03 syuem ssadoid B usUym sawm are ardY] ‘sl dnoid pue 1SN 2ARIYS By} UO
paseq s)s3} ssad0e §)1 suwioyiad [PuIay ayp ‘3[Y B uado aM UBYM ‘IBT[IES PIGLIDSIP dM SV

uojjound ssedoe

(:07'F UOND3G UT PAGLIDSIP SLSIYL) I0M 0} STy} 10§ Areonewoyne 3iq (q1-dnoid-3os
s A1oponp e ajededord 01 sey uomduny ITPXW 3y} pue Hq ar-dnoi8-jas ay; 9fqeud
0] aABY am ‘g SLR[OG PUE 7Z'H¢ XNUI'} 19puf) ‘SHE[OS pue Xnuig 10§ uondo ue g ‘€01 X
GO deN PUe 1'7°G (0SG991: 10§ }NeJIp a3 st dryszoumo dnoid 105 uondo sy} ‘pauoyUsW 3M SV
“XNUI uo A1030211p
1Tew/Toods/xea/ ayy ur ‘dwexs i0j ‘pasn St S quiod jey; woxj Aydresary
ayy umop ajededoid uayj [[Im SILI03OAIIP pue SIY JO dryszsumo dnoad sy Aroparrp
ayy 03 3utBuoyaq (q dnoid sy aaey [ImM A1030911p JeY) Ul Pajeald SILIOIIP pue sofy [[©
jey)} sn sarnsse— A1030911p Y3 Jo (1 dnoi8 sy Sunuayur—uondo puodass ayy uis(

-gsa01d ayy Jo (T dnoid 3a13a55d 3Y3 01 13s S [Mau Y3 JO (] dnoi3
a1 “ISEMIAYIO 1A1012311p 3L} Jo] dnoad ayy 03 39S 1 Iy Mau g Jo (] dnoid ay; ‘A10da11p dy3
10§ 398 S131q SIY1 §] "Pajeald 3ulaq SI Ay Y Yd1ym ut K1032231p 3y} 10§ 195 §1 }1q (1-dnoi3-1as ay
1ayiaym uo spuadap ajy mau e jo g dnoid ayj ‘6 stie[og pue (uondo junour 1adoid 3y ynm)
ZCPT XNUT U “pUBIWOD (T)3unouw dy3 03 Sey [erads e Suisn ‘siseq wsAs 31y e UO dpeu 3q
03 suoipdo ["X[SOJ 0M} IS} Udamiaq adIOYD 3y} mOj[e SWwA)sAs 3y £3X3 pue ZIXS XNUIT AL

3]y MaU Y}
10 (11 dnos$ ays se Aoppaxrp oy jo gy dnoad oy sasn sheme €01 X SO 2N PUe ['7'S ASd991d

‘pajeard 3uraq st
311 ay3 Yorym ut A1030211p Y3 Jo (1 dnoi8 ayj aq ued ayy mau e jo (] dnoid ayL T

‘ssa001d ayy Jo (1] dnoad aARdax9 A3 3q Ued 3[y MaU e JO (J] dnoxdayr 1

‘a[y mau e jo (g dnoid
ayy aurwaiep 03 suondo 3urmojjoj Ay} JO SUO ISOO0YD O} uonjejuawadwil ue smofe
I'XISOd "ssa201d 2y Jo (J] 195N 2ALDAYD Y} 03 39S ST J[Y mdu e JO (] 1osn Yl

3] Mau e Jo dIys1aumo Y} 10j U0
SIU} UI S3[NI Y3 0} [EIUIPI a1 £I0}021IP MU B JO diysiaumo ayj 10§ S3[NI YL, "UoHdUNg
ZTPYW A} ALIDSIP M USYM (7'F UOHIIG Ul AI0P1IIP M3U B 21eald 0} MOY 995 [[,5M
*aly mau ayj Jo (] dnoid pue (] 19sn 3y} 03 paugisse a1am sanea jeym pres 19A9U M
/qeaxo 10 uado tayjd Jursn ‘g 103deyD Ul 9]1j MAU B JO UOHEAILD 3} PIqLISIP oM USYM

salI019alig pue sajld MaN jo diysisumo

LY

9v

G6 uompdung sseode L'§ uondag

Jno'e QT:ZT 0€ AON S¥6SI JO0I T X-IXMISMI-

319 QINS puv 43umo yoayo Ino‘e - BT #
#1q (1-42sn-13s U0 Unj puy Ino‘e s+n powyo #
1004 0 (O] 4351 s 213f aSuvyo Ino'e 3001 uMOYD #

piomssvd sasniadns aajua :paomsseq
4asniadns awodaq ns §

POTUSp UOTISSTWISgd :mopeys/d3s/ 103 xoxxa uado

PITUSP UOTISSTWISd :MOpPeUS/D38/ I0J IO0IIB SS3IDO®
Mmopeys/o3s/ jnote/° 3

mMopeys/o39/ z00Z LT TNL SIET 3001 T -------- I-
mopeys/oj3e/ 1- 81 $

MO butpesx 1oz usdo

MO sSs900® pesax

Jno*e jno‘e/* §

Ino‘® OT:ZT 0€ AON S¥H6ST Ies T X-IXMIXMI-

jno‘e 1- 8T S

‘wrer3oxd sty3 yim uorssas sjdures e st a1

uonduny sseooe jo ajdwrexy g arnSrg

‘(0)3TX3
! (wu\MO Burpesa zo03 usado,)zjutad
asTe
!([t]abxe ‘,sg 103 a01x° uado,) 3sx xas
(0 > (XINOQY O ‘[T]abie)usdo) 31
! (Wu\MO sso00® pesax,)yjurad
EER]
‘([1]abxe ’,s3 107 10118 SS°00®,) 391 IID
(0 > (MO ¥ ‘[1)abae)sseooe) 3T
! (u<dweuyied> Ino-e :sbesn,)3Tnb x10
(z =i obxe) 3T
([1abxex xeyo ‘obae nu;)u;ei
3ut

<Y T3udI> SpnIouT#H
«U-onde, epnrouty

‘uondUNy SS900% 3} JO 3N 3y} SMOYS g'F ISy
ajdwex3

<Y paisTun> woijy ’UO}JDUI‘IJ S$S300® 10§ SJURISUOD 3poiu YL LY 3-"\3!;]

3[1 JO DUIISIXD 10§ 353} | MO 4
uotssiwzad 9jndaxa 10§ 383} | MO X
uorsstuiad 9)1Im 10§ 1S3} | MO M
uotssnuiad peax 105383} | MO ¥

uondusag apou

£ 2IN31] UT UMOYS SIUBISUOD dyj JO AU JO YO ISIMIIq ay3 st apow Y,

¥ 1o1dey) SILIOAII(] pue SI[L{ 96

(0 > (M3IM¥MY ‘.Ieq,)3e21D) IT

{(HIOMI S | HIONI S | d¥oMI S | duDdI S)3sewn
!(,003 103 XOI1ID JeAID,)SAS 119

(0 > (M¥MIMY ‘,003F,)3edad) 3IT

¢ (0)3seun
}
(pToA)UTEW
aut

(HIOMI S|HIO¥I S|d¥DMI™ S|d¥D¥I S |d¥SAMI S|dSQEI S) MuMYMA SUTISP#

<y T3UD3I> SpPNIOUTH
WUronde, spnioutl

‘sy1q uorssturiad 1ayjo pue dnoid ay; [[e s3[qesIp jeys yseun
® UJIM JUO puE () JO SEwn B UM JUO ‘S3[Y 0Mm] sajeald ¢F Sy ur wesdord ayp

s)dwex3

“apowi S,31 S} Ul ffo pauing dIe Jsew UOTeald Ipoul [y Iy}

Ul 10 3Ie 3o} $3q AUy 07§ UOLDAG UT AI0}03IIp M3U B 3}eald 03 MOY 3qLIDSIP M ('snq

uorsstuiad ssadde s, 3[y Mmau 3y} saydads yeyy Juswmre apow e jdadoe yrog suonoumy

Jeaxo pue uado ay Jo uondLdssp INo ¢ pue ¢'g SUOTIAG WOy [[ed3y) A10303IIp Mau
© 1O 9[IJ M3U B S3)eald $s3001d 3} ISAUIYM PaIsn SI ySew UOHEaId dpoul 3[Y],

U0 08 pue ‘¥SAMI S “ASANI_ S 9y N3y

WIOIj SJURISUOD JUTU Y} JO AUB JO YO ISIMIIq Y} Se pauLio st jusum3re yspwo Ay,

SSeW UoeaId dpow Iy snoraaid :surmiay

! (yspwo 3 Spouw) jseun 3 Spow

<y-3e3s/sAs> opniout#

(“UINJDI JO1ID Ue JARY J,USI0P JeLj} SUOTDUNJ M3 Y} JO dUO ST SIYT) "dn[eA snoraaxd

a3 suInja1 pue ssadoid ayy 10§ yseWw UOHEIId SPOW (Y 3} 1S UOHOUN HSEewn SYJ,
'559001d AI9A3 Y3IM PIIRIDOSSE ST JeY} YSeW UOL}EaId POUl 31 3y} 3qLIdSIP
ued am 3]y 1949 YiIm pajerosse siq uorsstuiad auru oy paquIdSap 9A,3M Jel}) MON

uolnoun4d 3seun

K191dwod sapdurexs asayy a1ed1idnp 03 3[qe 3q 3,uom noA ‘uorsstuirad 1asniadns
3ARY JOU Op pUE WAJSAS ISSNINUW & UO 31,N0A J] "SHIOM Junjdswios Moy Jensuowsp 03
‘asniadns a1 AW0d3q 0} YHIMS SawHawos [[,om ‘g 1xdey) ur pue sjdwexs Surpadaxd ays ug

a “pa200ns [{Im uonounj usdo Ay} YSnoy uaAd ‘a[1y 3y} peal A[feuriou
JouuEd JI9SN [edl JY} jey) SUIULIdPP ued weidord qr-19sn-jos ayy ‘odwrexa sny) uf

MO Butpesx 1oz usdo

pOTUSp UOTSSTWIS :MOPPYS/D3d/ I10J I0IID SSIDDE
mopeys/o3a/ 3no-e/*

135N [pULIOU 0] YoV 08 31X #

8'v

46 uopdung ysewn §'F Uondag

s}iq uorsstiuuzad ssadde ayy ysewn ay] QLF 2nBLf

)NdIxXa-13yj0 1000
SHIM-13Y}0 zooo
peai-13y30 ¥000
andaxa-dnoid 0100
Aum-dnoid 0200
peair-dnoig 0%00

3INDIXI-13sN 00T0
LIM-ISN 0020
peai-1asn 00%0

urueapy 11q ysey

'3[y INOA 3urndaxa 10 “unrim
‘Buipear woy s1210 pue sa[y oA Junum woy saquaw dnoid jusnaid o0y 70 pue
‘sa[y 1noA Sunuim woyy s1ayjo pue saquaw dnoid jusaard 0y gz ‘say ok Sunum
WOl SIAYI0 juaaald 03 gpp 2Ie SanjeA YSeuwn uowwod dwog -s3q Jurpuodsaiiod
3y} 3unias Aq parusp aq ued SuoISSTULId] ‘O['F NS Ul UMOYS SB ‘JJO paysew
2q 0} uorsstuzad suo Zuniussardar 31q U0 YIM ‘[300 ur passardxa St anjeA Y[, d}eaId
A3y safy ay3 uo suorsstuirad nejep 3Yj [0IUOD 0} IN[RA SBWN I} J9S ULD SI19S(]
[SEW UOTJLSID PO J[1j JUSLIND
ay} jund 10 39S 0} SN UEd 9M Jey} PURWIWIOD SBWn Ul-}[Ing ® 3AeY S[[?YS 34} JO [[V
(119ys © usyjo) juared sy Jo ysew Yy D33k 3,usv0p $s3201d e JO SPUW UONRIId SpOW J[Y
ayy Suidueyd jey; sn smoys sy 1ayye pue werdord sy uni am J10jaq NSEW UOREIId
apow [y ay3 yuLd 03 puewIwod ysewn s, [[ays ayj asn am ‘sjdwexs Suipadard ayy ug
‘JJO pauany aq 03 s3iq uorssturrad asned ued Suruuns
St $s3d01d INO USYM D933 UI SI Byl AN[eA YSEWN Y ‘dSIMIYIO ‘() O} MSewn Iy
39S PINOYS M ‘3]l B peal ued auoAue Jey) aInsua 0} juem am i ‘ddwexs 104 ‘Suruuni
st $sa001d Ay} J[IYM anjea sfsewn ay) AJIpow jsnw am ‘pajqeus ale syq uotssiuniad
ssadde dyads jey) aimsua 0) Juem am J1 ‘Sa[y mau djean jeyy swerdoid Funum
UM ‘ssafayianaN padueyd 1aasu pue ‘o dn-jrels s [pys a3 Aq ‘urdof uo ‘souo
19s AJ[ensn st)] "anfea ysewn IdY) YHM [edp I9A3U SWISAS XIN[] JO SIasn JSON

O
Z00
PaSUYD YSUUI UO1VLD dpor Y o] fi 2as yseum $
003 0Z:TIZ L ©99Q 0 Ies T -MI-MI-MI-
Ieq 0C: 1z L ©=20d 0 Ies T ------- MI -
Ieq ooy T- ST $
anote/* ¢
200
Yso 101pa40 apout afy Juadind oy juad js4yf yseun $

"}9S U23q aAey s31q uotssturiad ayy Moy 99s ued am ‘weidoxd sy uni om
! ISST Y !

uonduny yseun jo dydwexyg ¢ amSig

‘(0)3TX®
!{(yIeq I0J I0XI2 1eaID,)sks 1is

¢ 101deyn SOLIOIAI(] pue SI[L] 86

<y-7e3S/SAS> WOIJ ‘SUOKIUNJ POWYD 10 SJURISUOD apoui YL TL'p 2anS1g

(pHom) 19410 Aq 21ndaxd | HIOXI S
(priom) 1230 Aq LM | HIOMI S
(p10oMm) Jay1o Aq peal | HLONWI S
(pHoMm) 13430 Aq 31Nd3X3 pue ‘aj1im ‘peal OXMII S

dnoid £gaydaxa | dYOXI S
dnoi8 Aqajum | quOMI S
dnoi3 £4q pea:r | d¥odI S
dnoi8 Aq andaxa pue ‘a11m ‘pear OXMII S

(19umo) 19sn Aqandaxa | ¥SAXI S
(19umo) 128N Aq 3yam | ¥SOAMI S
(13umo) 1asn £q pear | ¥SNAT S

(13umo) 198N £q ANDAXS pue ‘9LMm ‘peal NXMaI S
(11q Ao1s) 1xd3-paases XIASI S
uornoaxa uo (J[-dnoid-yas arosi s
UOTINIAX3 Uo (][-19SN-13s arnsi s
[» uonduossq 2poL

‘11 2INSL] Ur UMOYS SJURISUOD Y} JO YO ISTMIIq Y] se paywads st apow 3y,
-suorssturiad 19sniadns aaey ysnw ssado1d ayj 10 ‘AL Y3 JO (I FOUMO U} O3 renba

aq ysnux ssadoid ayy Jo (I I9Sn A1 Y} ‘3[Y e JO $1q uotsstwrad ayy a8ueyd 0],
‘pauado uaaq Apeaife sey jeyy [y e uo sajerado
uonpuny powyo3 Jy) seardym ‘a[y paypads ayi uo sajerado uonpuny powyd YL

IO1I3 U0 [— O J1 'uIna1 iog
! (apowt 3 spou 'Sapay,{ JuT)powysy Ut

! (apows 3 epowl ‘awpuijpdx IBUYD ISUOD)powyd UT

<y-3els/sks> opniouTH

"3y Bumsixe ue 10§ suotssturiad ssadde a[y Sy a3ueyd 03 SN MO[[e SUOTIdUNJ OM] 3S3Y],
suoljoungd pouyo3y pue pouryo

=0 'XI=H6'XMI=N

wiof arjoquuhs oy jurid s- yseumn $

YSUUd UOLPaLD APOLU I[Y i} dSUVYD LZ0 Mseum ¢
XI=0'xXMI=b'xXxMI=n

uLiof orjoquufis ayg jurid s- jseum g

200

YSvtut Uo1jvaLd pous Y Jua4ind ay jurd 151y jyseum $

"MO[9q UMOYS ‘pUueliuIod
oyr jo swioj yroq aredwio) -(seW UOHEaId J[Y Y} UL 3AS “dT) PaUSp oG 03 oIe
S9UO UYOTYM JO Peajsul (3Seul UOKREIId (Y Ay} UT 1e3[d “9'T) PIMO[[e oq 0} o1e suotssturrad
Prym sayads jewnioj doquAS 3y} ‘JRULIOf [E}00 dyF MU PUBLIWOd HSEUn
ays jo w0y drjoquuAs e y1oddns [Rys ay3 yeu saxmbar uoneoyadg XINN A13uIs 3y L

66 suopduUN,] pouysy pue powyd 6% uOoTIG

195 duraq
11q 9ndaxs-dnoid ayy ynoypm 3as st 1q qr-dnoid-1as ayy yeys Ajudis oy s se uorssruriad
AMdaX3-dnoad ay) s)sI| pUBLIWOD ST 3Y3 3oy} 0N J1q dndaxa-dnoid ayy jyo pauiny pue
1q a1-dnoi8-1as ayy uo pauny Apordxe aaey oy wayy AJipowr usy} pue suorssturad
JUSLITL> Sl Ureiqo 0} 3B3S [[ed JSIY 9M ‘SIY) Op O] “3)ejS JUSLIMD IIBY} O} SARE[AI
suotssturad 2y 39s am ‘003 Ay Ayy 104 ‘syq uorsstuuad JUSLIMD 3y} jo ssapredal
‘on[eA amjosqe ue 0} xeq opy oy} jo suorssiurrad Ay 39S aary am ‘ojdurexs ST} uf

003 9Z:TZ L ©292d 0 Ies T -MISMI-MI-
aeq Qz:1C L o3q 0 Ies T -~I--I-MI-
Ieq 003 T- 8T $
ST 831l OM3 943 JO 31e3s [euy a3 Jey) 33s om ‘z1p a3 ur weaBoid sy Juruuni 1ayy

uondurny pouyo jo sjdwexyg gy arnSig

‘(0)3tx®
‘(uwIeq I0J I0II9 pOWYD,)SAS I1Is
(0 > (HLOMI § | d¥4O¥I S | ¥SOMI S | ¥SONI S ‘.Ieq,)pouwyd) 3T
/* w--I--I-mI, O3 apou 2InTosge 38s x/
! (4003 I03 I0OII® powyd,)sAs xis
(0 > (AIDST S | (d9OXI S. 3 Spow 3s°Inqaels) ’,003,)powys) 3T
! (4O0F 103 10118 3038,)SASs 119
(0 > (Ingaeas® ’,003,)3e3s) IT

/» @3ndexa-dnoab 330 uiny pue gIi-dnoab-1ss uo uinj x/

{gnqaeas 3e3s jonaas

}
(PToA) uTRW
Jut

Wy eonde, spnroutg

'S9[Y OM} a53Y) JO Spour Ay} sayTpow 71§ 2n31g ur umoys werSoid ayJ,
003 0Z:T1Z L D3d 0 Ies T -MI-MI-MI-
Ieq 02¢:1Z L 929Q 0 IS T —----m- MI -
ieq ooz T- ST S
uondUNJ Sewn Iy} enSuUoWIp
0} 6% a3ty ur werdoid ayy uer am usym xeq pue ooy S3[Y Y} JO 33.IS [RUY Y} [[LIFY

ajdwex3

“uondas 3xdu ay3 Ut asodand sy aqusap ap uonesywads XN d[urg
U3 UT UOISUdIXa [SX Ue Se paulap st 3] ['XISOd JO 317ed 10U ST (XIASIS) 31q 3X33-PaAes ay],

(OXMaI s pue
‘DXMAT S ‘NXMII) SIUBISUOD PIUIGUIOD DI} Y} PUB “(XLIAS I S) JURISUOD }X3}-PIAES
9y (QIDSI S pue QINSI S) SIUBISUOD (JI-19S OM} Y} PIPPEe dA,0M ‘9 am3iyg
w01y $31q UorsstuLIad $sa00k (Y AUIU Y3 axe ([N1 UI SILFUS 3 JO SUIU ey 910N

¥ Jg;deqa SOLIOIIAIL(] pue So[lq 001

Section 4.10 Sticky Bit 101

On Solaris, the 1s command displays an 1 instead of an S to indicate that mandatory file and
record locking has been enabled for this file. This applies only to regular files, but we'll
discuss this more in Section 14.3.

Finally, note that the time and date listed by the 1s command did not change after
we ran the program in Figure 4.12. We’ll see in Section 4.18 that the chmod function
updates only the time that the i-node was last changed. By default, the 1s -1 lists the
time when the contents of the file were last modified.)

The chmod functions automatically clear two of the permission bits under the
following conditions:

* On systems, such as Solaris, that place special meaning on the sticky bit when
used with regular files, if we try to set the sticky bit (S_ISVTX) on a regular file
and do not have superuser privileges, the sticky bit in the mode is automatically
turned off. (We describe the sticky bit in the next section.) This means that only
the superuser can set the sticky bit of a regular file. The reason is to prevent
malicious users from setting the sticky bit and adversely affecting system
performance.

On FreeBSD 5.2.1, Mac OS X 10.3, and Solaris 9, only the superuser can set the sticky bit on a
regular file. Linux 2.4.22 places no such restriction on the setting of the sticky bit, because the
bit has no meaning when applied to regular files on Linux. Although the bit also has no
meaning when applied to regular files on FreeBSD and Mac OS X, these systems prevent
everyone but the superuser from setting it on a regular file.

e It is possible that the group ID of a newly created file is a group that the calling
process does not belong to. Recall from Section 4.6 that it's possible for the
group ID of the new file to be the group ID of the parent directory. Specifically,
if the group ID of the new file does not equal either the effective group ID of the
process or one of the process’s supplementary group IDs and if the process does
not have superuser privileges, then the set-group-ID bit is automatically turned
off. This prevents a user from creating a set-group-ID file owned by a group that
the user doesn’t belong to.

FreeBSD 5.2.1, Linux 2.4.22, Mac OS X 10.3, and Solaris 9 add another security feature to try to
prevent misuse of some of the protection bits. 1f a process that does not have superuser
privileges writes to a file, the set-user-ID and set-group-1D bits are automatically turned off. If
malicious users find a set-group-ID or a set-user-ID file they can write to, even though they can
modify the file, they lose the special privileges of the file.

410 Sticky Bit

The S_ISVTX bit has an interesting history. On versions of the UNIX System that
predated demand paging, this bit was known as the sticky bit. If it was set for an
executable program file, then the first time the program was executed, a copy of the
program’s text was saved in the swap area when the process terminated. (The text
portion of a program is the machine instructions.) This caused the program to load into
memory more quickly the next time it was executed, because the swap area was
handled as a contiguous file, compared to the possibly random location of data blocks

102

Files and Directories Chapter 4

4.11

in a normal UNIX file system. The sticky bit was often set for common application
programs, such as the text editor and the passes of the C compiler. Naturally, there was
a limit to the number of sticky files that could be contained in the swap area before
running out of swap space, but it was a useful technique. The name sticky came about
because the text portion of the file stuck around in the swap area until the system was
rebooted. Later versions of the UNIX System referred to this as the saved-text bit; hence,
the constant S_ISVTX. With today’s newer UNIX systems, most of which have a virtual
memory system and a faster file system, the need for this technique has disappeared.

On contemporary systems, the use of the sticky bit has been extended. The Single
UNIX Specification allows the sticky bit to be set for a directory. If the bit is set for a
directory, a file in the directory can be removed or renamed only if the user has write
permission for the directory and one of the following:

¢ Owns the file

® Owns the directory

¢ Is the superuser
The directories /tmp and /var/spool/uucppublic are typical candidates for the
sticky bit—they are directories in which any user can typically create files. The
permissions for these two directories are often read, write, and execute for everyone
(user, group, and other). But users should not be able to delete or rename files owned
by others.

The saved-text bit is not part of POSIX.1. It is an XSI extension to the basic POSIX.1
functionality defined in the Single UNIX Specification, and is supported by FreeBSD 5.2.1,
Linux 2.4.22, Mac OS X 10.3, and Solaris 9.

Solaris 9 places special meaning on the sticky bit if it is set on a regular file. In this case, if none
of the execute bits is set, the operating system will not cache the contents of the file.

chown, fchown, and lchown Functions

The chown functions allow us to change the user ID of a file and the group ID of a file.

#include <unistd.h>

int chown(const char *pathname, uid_t owner, gid_t group) ;
int fchown (int filedes, uid_t owner, gid_t group) ;

int lchown(const char *pathname, uid_t owner, gid_t group);

All three return: 0 if OK, -1 on error

These three functions operate similarly unless the referenced file is a symbolic link. In
that case, 1chown changes the owners of the symbolic link itself, not the file pointed to
by the symbolic link.

The 1chown function is an XSI extension to the POSIX.1 functionality defined in the Single
UNIX Specification. As such, all UNIX System implementations are expected to provide it.

If either of the arguments owner or group is —1, the corresponding ID is left unchanged.
Historically, BSD-based systems have enforced the restriction that only the
superuser can change the ownership of a file. This is to prevent users from giving away

Section 4.12 Fiie Size 103

4.12

their files to others, thereby defeating any disk space quota restrictions. System YV,
however, has allowed any user to change the ownership of any files they own.

POSIX.1 allows either form of operation, depending on the value of
_POSIX_CHOWN_RESTRICTED.

With Solaris 9, this functionality is a configuration option, whose default value is to enforce the
restriction. FreeBSD 5.2.1, Linux 2.4.22, and Mac OS X 10.3 always enforce the chown
restriction.

Recall from Section 2.6 that the _ POSIX_CHOWN_ RESTRICTED constant can optionally
be defined in the header <unistd.h>, and can always be queried using either the
pathconf function or the fpathconf function. Also recall that this option can
depend on the referenced file; it can be enabled or disabled on a per file system basis.
We'll use the phrase, if POSIX CHOWN_RESTRICTED is in effect, to mean if it applies
to the particular file that we’re talking about, regardless of whether this actual constant
is defined in the header.
If POSIX_CHOWN_RESTRICTED is in effect for the specified file, then

1. Only a superuser process can change the user ID of the file.

2. A nonsuperuser process can change the group ID of the file if the process owns
the file (the effective user ID equals the user ID of the file), owner is specified as
-1 or equals the user ID of the file, and group equals either the effective group ID
of the process or one of the process’s supplementary group IDs.

This means that when _POSIX_CHOWN_RESTRICTED is in effect, you can’t change the
user ID of other users’ files. You can change the group ID of files that you own, but only
to groups that you belong to.

If these functions are called by a process other than a superuser process, on
successful return, both the set-user-ID and the set-group-ID bits are cleared.

File Size

The st_size member of the stat structure contains the size of the file in bytes. This
field is meaningful only for regular files, directories, and symbolic links.

Solaris also defines the file size for a pipe as the number of bytes that are available for reading
from the pipe. We'll discuss pipes in Section 15.2.

For a regular file, a file size of 0 is allowed. We'll get an end-of-file indication on the
first read of the file.

For a directory, the file size is usually a multiple of a number, such as 16 or 512. We
talk about reading directories in Section 4.21.

For a symbolic link, the file size is the number of bytes in the filename. For
example, in the following case, the file size of 7 is the length of the pathname usr/1lib:

lrwxrwxrwx 1 root 7 Sep 25 07:14 lib -> usr/lib

(Note that symbolic links do not contain the normal C null byte at the.end of the name,
as the length is always specified by st_size.)

104 Files and Directories Chapter 4

Most contemporary UNIX systems provide the fields st_blksize and
st_blocks. The first is the preferred block size for 1/0 for the file, and the latter is the
actual number of 512-byte blocks that are allocated. Recall from Section 3.9 that we
encountered the minimum amount of time required to read a file when we used
st_blksize for the read operations. The standard 1/0O library, which we describe in
Chapter 5, also tries to read or write st _blksize bytes at a time, for efficiency.

Be aware that different versions of the UNIX System use units other than 512-byte blocks for

st_blocks. Using this value is nonportable.

Holes in a File

In Section 3.6, we mentioned that a regular file can contain “holes.” We showed an
example of this in Figure 3.2. Holes are created by seeking past the current end of file
and writing some data. As an example, consider the following:

$ 18 -1 core

-rw-r--r-- 1 sar 8483248 Nov 18 12:18 core
$ du -8 core
272 core

The size of the file core is just over 8 MB, yet the du command reports that the amount
of disk space used by the file is 272 512-byte blocks (139,264 bytes). (The du command
on many BSD-derived systems reports the number of 1,024-byte blocks; Solaris reports
the number of 512-byte blocks.) Obviously, this file has many holes.

As we mentioned in Section 3.6, the read function returns data bytes of 0 for any
byte positions that have not been written. If we execute the following, we can see that
the normal I/O operations read up through the size of the file:

S we -c core
8483248 core

The we(1) command with the - c option counts the number of characters (bytes) in the file.

If we make a copy of this file, using a utility such as cat(1), all these holes are
written out as actual data bytes of 0:

$ cat core > core.copy
$ 1ls -1 core*

-rw-r--r-- 1 sar 8483248 Nov 18 12:18 core
-rw-rw-r-- 1 sar 8483248 Nov 18 12:27 core.copy
$ du -8 core*

272 core

16592 core.copy

Here, the actual number of bytes used by the new file is 8,495,104 (512 x 16,592). The
difference between this size and the size reported by 1s is caused by the number of
blocks used by the file system to hold pointers to the actual data blocks.

Interested readers should refer to Section 4.2 of Bach [1986], Sections 7.2 and 7.3 of
McKusick et al. [1996] (or Sections 8.2 and 8.3 in McKusick and Neville-Neil [2005]), and

Section 4.14 . File Systems 105

413

4.14

Section 14.2 of Mauro and McDougall [2001] for additional details on the physical
layout of files.

File Truncation

There are times when we would like to truncate a file by chopping off data at the end of
the file. Emptying a file, which we can do with the O_TRUNC flag to open, is a special
case of truncation.

#include <unistd.h>
int truncate (const char *pathname, off_t length) ;
int ftruncate (int filedes, off_t length) ;

Both return: 0 if OK, —1 on error

These two functions truncate an existing file to length bytes. If the previous size of the
file was greater than length, the data beyond length is no longer accessible. If the
previous size was less than length, the effect is system dependent, but XSI-conforming
systems will increase the file size. If the implementation does extend a file, data
between the old end of file and the new end of file will read as 0 (i.e., a hole is probably
created in the file).

The ftruncate function is part of POSIX.1. The truncate function is an XSI extension to
the POSIX.1 functionality defined in the Single UNIX Specification.

BSD releases prior to 4.4BSD could only make a file smaller with truncate.

Solaris also includes an extension to fcntl (F_FREESP) that allows us to free any part of a
file, not just a chunk at the end of the file.

We use ftruncate in the program shown in Figure 13.6 when we need to empty a
file after obtaining a lock on the file.

File Systems

To appreciate the concept of links to a file, we need a conceptual understanding of the
structure of the UNIX file system. Understanding the difference between an i-node and
a directory entry that points to an i-node is also useful.

Various implementations of the UNIX file system are in use today. Solaris, for
example, supports several different types of disk file systems: the traditional
BSD-derived UNIX file system (called UFS), a file system (called PCFS) to read and
write DOS-formatted diskettes, and a file system (called HSFS) to read CD file systems.
We saw one difference between file system types in Figure 2.19. UFS is based on the
Berkeley fast file system, which we describe in this section.

106 Files and Directories Chapter 4
We can think of a disk drive being divided into one or more partitions. Each
partition can contain a file system, as shown in Figure 4.13.
disk drive partition partition partition
file system cylinder group 0 cylinder group 1 “e cylinder group n
boot block(s) -e— ’,,/f”/’ \\\
super block -w— (s:x};er =
block | 8 |imodel block 1 e data blocks
info | map |bitmap
copy
i-node | i-node . i-node

Figure 4.13 Disk drive, partitions, and a file system

The i-nodes are fixed-length entries that contain most of the information about a file.
If we examine the i-node and data block portion of a cylinder group in more detail,
we could have what is shown in Figure 4.14.

-4————————— directory blocks and data blocks ——— g

i-node array

i-nodeji-node;

filename
number

Figure 4.14 Cylinder group’s i-nodes and data blocks in more detail

Section 4.14 File Systems 107

Note the following points from Figure 4.14.

¢ We show two directory entries that point to the same i-node entry. Every i-node has
a link count that contains the number of directory entries that point to the i-node.
Only when the link count goes to 0 can the file be deleted (i.e., can the data blocks
associated with the file be released). This is why the operation of “unlinking a file”
does not always mean “deleting the blocks associated with the file.” This is why the
function that removes a directory entry is called unlink, not delete. In the stat
structure, the link count is contained in the st_nlink member. Its primitive system
data type is nlink_t. These types of links are called hard links. Recall from
Section 2.5.2 that the POSIX.1 constant LINK_MAX specifies the maximum value for a
file’s link count.

e The other type of link is called a symbolic link. With a symbolic link, the actual
contents of the file—the data blocks—store the name of the file that the symbolic
link points to. In the following example, the filename in the directory entry is the
three-character string 1ib and the 7 bytes of data in the file are usr/1ib:

lrwxrwxrwx 1 root 7 Sep 25 07:14 lib *> usr/lib

The file type in the i-node would be S_IFLNK so that the system knows that this is a
symbolic link.

e The i-node contains all the information about the file: the file type, the file’s access
permission bits, the size of the file, pointers to the file’s data blocks, and so on. Most
of the information in the stat structure is obtained from the i-node. Only two items
of interest are stored in the directory entry: the filename and the i-node number; the
other items—the length of the filename and the length of the directory record—are
not of interest to this discussion. The data type for the i-node number is ino_t.

e Because the i-node number in the directory entry points to an i-node in the same file
system, we cannot have a directory entry point to an i-node in a different file system.
This is why the 1n(1) command (make a new directory entry that points to an
existing file) can’t cross file systems. We describe the 1ink function in the next
section.

o When renaming a file without changing file systems, the actual contents of the file
need not be moved—all that needs to be done is to add a new directory entry that
points to the existing i-node, and then unlink the old directory entry. The link count
will remain the same. For example, to rename the file /usr/lib/foo to
/usr/foo, the contents of the file foo need not be moved if the directories
/usr/1lib and /usr are on the same file system. This is how the mv(1) command
usually operates.

We've talked about the concept of a link count for a regular file, but what about the
link count field for a directory? Assume that we make a new directory in the working
directory, as in

$ mkdir testdir

Figure 4.15 shows the result. Note that in this figure, we explicitly show the entries for
dot and dot-dot.

108

Files and Directories Chapter 4

4.15

P S
L0

2549
R

Figure 4.15 Sample cylinder group after creating the directory testdir

The i-node whose number is 2549 has a type field of “directory” and a link count equal
to 2. Any leaf directory (a directory that does not contain any other directories) always
has a link count of 2. The value of 2 is from the directory entry that names the directory
(testdir) and from the entry for dot in that directory. The i-node whose number is
1267 has a type field of “directory” and a link count that is greater than or equal to 3.
The reason we know that the link count is greater than or equal to 3 is that minimally, it
is pointed to from the directory entry that names it (which we don’t show in
Figure 4.15), from dot, and from dot-dot in the testdir directory. Note that every
subdirectory in a parent directory causes the parent directory’s link count to be
increased by 1.

This format is similar to the classic format of the UNIX file system, which is
described in detail in Chapter 4 of Bach [1986]. Refer to Chapter 7 of McKusick et
al. [1996] or Chapter 8 of McKusick and Neville-Neil [2005] for additional information
on the changes made with the Berkeley fast file system. See Chapter 14 of Mauro and
McDougall [2001] for details on UFS, the Solaris version of the Berkeley fast file system.

link, unlink, remove, and rename Functions

As we saw in the previous section, any file can have multiple directory entries pointing
to its i-node. The way we create a link to an existing file is with the 1ink function.

Section 4.15 link, unlink, remove, and rename Functions 109

#include <unistd.h>
int link(const char *existingpath, const char *newpath) ;

Returns: 0 if OK, -1 on error

This function creates a new directory entry, newpath, that references the existing file
existingpath. If the newpath already exists, an error is returned. Only the last component
of the newpath is created. The rest of the path must already exist.

The creation of the new directory entry and the increment of the link count must be
an atomic operation. (Recall the discussion of atomic operations in Section 3.11.)

Most implementations require that both pathnames be on the same file system,
although POSIX.1 allows an implementation to support linking across file systems. If
an implementation supports the creation of hard links to directories, it is restricted to
only the superuser. The reason is that doing this can cause loops in the file system,
which most utilities that process the file system aren’t capable of handling. (We show
an example of a loop introduced by a symbolic link in Section 4.16.) Many file system
implementations disallow hard links to directories for this reason.

To remove an existing directory entry, we call the unlink function.

#include <unistd.h>

int unlink (const char *pathname) ;

Returns: 0 if OK, -1 on error

This function removes the directory entry and decrements the link count of the file
referenced by pathname. 1f there are other links to the file, the data in the file is still
accessible through the other links. The file is not changed if an error occurs.

We've mentioned before that to unlink a file, we must have write permission and
execute permission in the directory containing the directory entry, as it is the directory
entry that we will be removing. Also, we mentioned in Section 4.10 that if the sticky bit
is set in this directory we must have write permission for the directory and one of the
following:

e Own the file
¢ Own the directory
¢ Have superuser privileges

Only when the link count reaches 0 can the contents of the file be deleted. One
other condition prevents the contents of a file from being deleted: as long as some
process has the file open, its contents will not be deleted. When a file is closed, the
kernel first checks the count of the number of processes that have the file open. If this
count has reached 0, the kernel then checks the link count; if it is 0, the file’s contents are
deleted.

110

Files and Directories

Chapter 4

Example

The program shown in Figure 4.16 opens a file and then unlinks it. The program then

goes to sleep for 15 seconds before terminating.

#include "apue.h"
#include <fcntl.h>
int
main(void)
{
if (open("tempfile", O RDWR) < 0)
err sys("open error");
if (unlink("tempfile") < 0)
err_sys("unlink error");
printf ("file unlinked\n");
sleep(15);
printf ("done\n") ;
exit (0);

Figure 4.16 Open a file and then unlink it

Running this program gives us

$ 1s -1 tempfile look at how big the file is

SIW-Y----- 1 sar 413265408 Jan 21 07:14 tempfile

$ df /home check how much free space is available
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hda4 11021440 1956332 9065108 18% /home

$./a.out & run the program in Figure 4.16 in the background
1364 the shell prints its process ID

$ file unlinked the file is unlinked

ls -1 tempfile see if the filename is still there

ls: tempfile: No such file or directory the directory entry is gone
$ df /home see if the space is available yet

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hda4 11021440 1956332 9065108 18% /home

$ done the program is done, all open files are closed
df /home notw the disk space should be available
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hda4 11021440 1552352 9469088 15% /home

now the 394.1 MB of disk space are available

O

This property of unlink is often used by a program to ensure that a temporary file
it creates won't be left around in case the program crashes. The process creates a file
using either open or creat and then immediately calls unlink. The file is not deleted,
however, because it is still open. Only when the process either closes the file or

terminates, which causes the kernel to close all its open files, is the file deleted.

If pathname is a symbolic link, unlink removes the symbolic link, not the file
referenced by the link. There is no function to remove the file referenced by a symbolic

link given the name of the link.

Section 4.15 link, unlink, remove, and rename Functions 111

The superuser can call unlink with pathname specifying a directory, but the
function rmdir should be used instead to unlink a directory. We describe the rmdir
function in Section 4.20.

We can also unlink a file or a directory with the remove function. For a file,
remove is identical to unlink. For a directory, remove is identical to rmdix.

#include <stdio.h>
int remove (const char *pathname) ;

Returns: 0 if OK, -1 on error

ISO C specifies the remove function to delete a file. The name was changed from the historical
UNIX name of unlink because most non-UNIX systems that implement the C standard didn’t
support the concept of links to a file at the time.

A file or a directory is renamed with the rename function.

#include <stdio.h>

int rename (const char *oldname, const char *newname) ;

Returns: 0 if OK, -1 on error

This function is defined by ISO C for files. (The C standard doesn’t deal with directories.)
POSIX.1 expanded the definition to include directories and symbolic links.

There are several conditions to describe, depending on whether oldname refers to a
file, a directory, or a symbolic link. We must also describe what happens if newname
already exists.

1. If oldname specifies a file that is not a directory, then we are renaming a file or a
symbolic link. In this case, if newname exists, it cannot refer to a directory. If
newname exists and is not a directory, it is removed, and oldname is renamed to
newname. We must have write permission for the directory containing oldname
and for the directory containing newname, since we are changing both
directories.

2. If oldname specifies a directory, then we are renaming a directory. If newname
exists, it must refer to a directory, and that directory must be empty. (When we
say that a directory is empty, we mean that the only entries in the directory are
dot and dot-dot.) If newname exists and is an empty directory, it is removed, and
oldname is renamed to newname. Additionally, when we’'re renaming a directory,
newname cannot contain a path prefix that names oldname. For example, we
can’t rename /usr/foo to /usr/foo/testdir, since the old name
(/usr/foo) is a path prefix of the new name and cannot be removed.

3. If either oldname or newname refers to a symbolic link, then the link itself is
processed, not the file to which it resolves.

112

Files and Directories Chapter 4

4.16

4. As a special case, if the oldname and newname refer to the same file, the function
returns successfully without changing anything.

If newname already exists, we need permissions as if we were deleting it. Also, because
we're removing the directory entry for oldname and possibly creating a directory entry
for newname, we need write permission and execute permission in the directory
containing oldname and in the directory containing newname.

Symbolic Links

A symbolic link is an indirect pointer to a file, unlike the hard links from the previous
section, which pointed directly to the i-node of the file. Symbolic links were introduced
to get around the limitations of hard links.

e Hard links normally require that the link and the file reside in the same file
system

* Only the superuser can create a hard link to a directory

There are no file system limitations on a symbolic link and what it points to, and anyone
can create a symbolic link to a directory. Symbolic links are typically used to move a file
or an entire directory hierarchy to another location on a system.

Symbolic links were introduced with 4.2BSD and subsequently supported by SVR4.

When using functions that refer to a file by name, we always need to know whether
the function follows a symbolic link. If the function follows a symbolic link, a
pathname argument to the function refers to the file pointed to by the symbolic link.
Otherwise, a pathname argument refers to the link itself, not the file pointed to by the
link. Figure 4.17 summarizes whether the functions described in this chapter follow a
symbolic link. The functions mkdir, mkfifo, mknod, and rmdir are not in this figure,
as they return an error when the pathname is a symbolic link. Also, the functions that
take a file descriptor argument, such as fstat and fchmod, are not listed, as the
handling of a symbolic link is done by the function that returns the file descriptor
(usually open). Whether or not chown follows a symbolic link depends on the
implementation.

In older versions of Linux (those before version 2.1.81), chown didn’t follow symbolic links.
From version 2.1.81 onward, chown follows symbolic links. With FreeBSD 5.2.1 and Mac OS X
10.3, chown follows symbolic links. (Prior to 4.4BSD, chown didn’t follow symbolic links, but
this was changed in 44BSD.) In Solaris 9, chown also follows symbolic links. All of these
platforms provide implementations of 1chown to change the ownership of symbolic links
themselves.

One exception to Figure 4.17 is when the open function is called with both
O_CREAT and O_EXCL set. In this case, if the pathname refers to a symbolic link, open
will fail with errno set to EEXIST. This behavior is intended to close a security hole so
that privileged processes can’t be fooled into writing to the wrong files.

Section 4.16

Symbolic Links

113

Function Does not follow Follows
symbolic link symbolic link

access .
chdir .
chmod .
chown 4 .
creat .
exec .
lchown .

link]
lstat 4

open .
opendir .
pathconf .
readlink i

remove .

rename .

stat b
truncate .
unlink .

Figure 4.17 Treatment of symbolic links by various functions

Example

It is possible to introduce loops into the file system by using symbolic links. Most
functions that look up a pathname return an errno of ELOOP when this occurs.

Consider the following commands:

$ mkdir foo make a new directory

$ touch foo/a create a O-length file

$ 1n -8 ../foo foo/testdir create a symbolic link

$ 1s -1 foo

total O

-YW-r----- 1 sar 0 Jan 22 00:16 a

lrwxrwxrwx 1 sar 6 Jan 22 00:16 testdir -> ../foo

This creates a directory foo that contains the file a and a symbolic link that points to
f£00. We show this arrangement in Figure 4.18, drawing a directory as a circle and a file
as a square. If we write a simple program that uses the standard function £tw(3) on

Solaris to descend through a file hierarchy, prin

output is
foo
foo/a
foo/testdir
foo/testdir/a
foo/testdir/testdir
foo/testdir/testdir/a
foo/testdir/testdir/testdir
foo/testdir/testdir/testdir/a

(many more lines until we encounter an ELOOP error)

ting each pathname encountered, the

116

Files and Directories Chapter 4

4.19

ID, changing the number of links, and so on. Because all the information in the i-node
is stored separately from the actual contents of the file, we need the changed-status
time, in addition to the modification time.

Note that the system does not maintain the last-access time for an i-node. This is
why the functions access and stat, for example, don’t change any of the three times.

The access time is often used by system administrators to delete files that have not
been accessed for a certain amount of time. The classic example is the removal of files
named a.out or core that haven’t been accessed in the past week. The find(1)
command is often used for this type of operation.

The modification time and the changed-status time can be used to archive only
those files that have had their contents modified or their i-node modified.

The 1s command displays or sorts only on one of the three time values. By default,
when invoked with either the -1 or the -t option, it uses the modification time of a file.
The -u option causes it to use the access time, and the -c option causes it to use the
changed-status time.

Figure 4.20 summarizes the effects of the various functions that we've described on
these three times. Recall from Section 4.14 that a directory is simply a file containing
directory entries: filenames and associated i-node numbers. Adding, deleting, or
modifying these directory entries can affect the three times associated with that
directory. This is why Figure 4.20 contains one column for the three times associated
with the file or directory and another column for the three times associated with the
parent directory of the referenced file or directory. For example, creating a new file
affects the directory that contains the new file, and it affects the i-node for the new file.
Reading or writing a file, however, affects only the i-node of the file and has no effect on
the directory. (The mkdir and rmdir functions are covered in Section 4.20. The utime
function is covered in the next section. The six exec functions are described in
Section 8.10. We describe the mkfifo and pipe functions in Chapter 15.)

utime Function

The access time and the modification time of a file can be changed with the utime
function.

#include <utime.h>
int utime(const char *pathname, const struct utimbuf *times) ;

Returns: 0 if OK, -1 on error

The structure used by this function is

struct utimbuf {
time_t actime; /* access time */
time_t modtime; /* modification time */

}

Section 4.19 utime Function 117

Parent directory
Function Referenced file of referenced file | Section Note
or directory or directory
a m c a m c
chmod, fchmod . 49
chown, fchown . 411
creat 34 O_CREAT new file
creat . . 34 O_TRUNC existing file
exec . 8.10
1chown . 411
link . . . 415 parent of second argument
mkdir . . .] . 420
mkfifo 15.5
open 33 O_CREAT new file
open . . ‘ 33 O_TRUNC existing file
pipe . . . 15.2
read . 37
remove . . . 4.15 remove file = unlink
remove . . 4.15 remove directory = rmdir
rename . . . 4.15 for both arguments
romdir . . 420
truncate, ftruncate . . 4.13
unlink . . . 4.15
utime .] . 4.19
write . . 38

Figure 4.20 Effect of various functions on the access, modification, and changed-status times

The two time values in the structure are calendar times, which count seconds since the
Epoch, as described in Section 1.10.

The operation of this function, and the privileges required to execute it, depend on
whether the times argument is NULL.

o If times is a null pointer, the access time and the modification time are both set to
the current time. To do this, either the effective user ID of the process must
equal the owner ID of the file, or the process must have write permission for the
file.

o If times is a non-null pointer, the access time and the modification time are set to
the values in the structure pointed to by times. For this case, the effective user ID
of the process must equal the owner ID of the file, or the process must be a
superuser process. Merely having write permission for the file is not adequate.

Note that we are unable to specify a value for the changed-status time, st_ctime—the
time the i-node was last changed—as this field is automatically updated when the
ut ime function is called.

On some versions of the UNIX System, the touch(1) command uses this function.
Also, the standard archive programs, tar(1) and cpio(1), optionally call utime to set
the times for a file to the time values saved when the file was archived.

118 Files and Directories Chapter 4

Example

The program shown in Figure 4.21 truncates files to zero length using the 0_TRUNC
option of the open function, but does not change their access time or modification time.
To do this, the program first obtains the times with the stat function; truncates the file,
and then resets the times with the ut ime function.

#include "apue.h"

#include <fcntl.h>

#include <utime.h>

int

main(int argc, char *argvl([])

{
int i, fd;
struct stat statbuf;
struct utimbuf timebuf;

for (1 = 1; i < argc; i++) {
if (stat(argv([i], &statbuf) < 0) { /* fetch current times */
err_ret("%s: stat error", argvl(i]);
continue;
}
if ((fd = open(argv{i], O RDWR | O_TRUNC)) < 0) { /* truncate */
err_ret("%s: open error", argv(il]);

continue;

}

close (fd) ;

timebuf.actime = statbuf.st_atime;

timebuf.modtime = statbuf.st _mtime;

if (utime(argv([i], &timebuf) < 0) { /* reset times */
err_ret ("%s: utime error", argv(i]);
continue;

exit (0);

Figure 4.21 Example of utime function

We can demonstrate the program in Figure 4.21 with the following script:

$ 18 -1 changemod times look at sizes and last-modification times
-YWXrwxr-x 1 sar 15019 Nov 18 18:53 changemod
-YWXrwxr-x 1 sar 16172 Nov 19 20:05 times

$ 1s -lu changemod times look at last-access times
-IrWXrwxr-x 1 sar 15019 Nov 18 18:53 changemod
-rwxrwxr-x 1 sar 16172 Nov 19 20:05 times

$ date print today’s date
Thu Jan 22 06:55:17 EST 2004
$./a.out changemod times run the program in Figure 4.21

$ 1s -1 changemod times and check the results

Section 4.20 mkdir and rmdir Functions 119

4.20

-rwXrwxr-x 1 sar 0 Nov 18 18:53 changemod
-rwXrwxr-x 1 sar 0 Nov 19 20:05 times

$ 1s -lu changemod times check the last-access times also
-rwXrwxr-x 1 sar 0 Nov 18 18:53 changemod
-rwxrwxr-x 1 sar 0 Nov 19 20:05 times

$ 1s -lc changemod times and the changed-status times
-YWXrwxr-x 1 sar 0 Jan 22 06:55 changemod
-rwXrwxr-x 1 sar 0 Jan 22 06:55 times

As we expect, the last-modification times and the last-access times are not changed. The
changed-status times, however, are changed to the time that the program was run. a

mkdir and rmdir Functions

Directories are created with the mkdir function and deleted with the rmdir function.

#include <sys/stat.h>

int mkdir (const char *pathname, mode_t mode) ;

Returns: 0 if OK, -1 on error

This function creates a new, empty directory. The entries for dot and dot-dot are
automatically created. The specified file access permissions, mode, are modified by the
file mode creation mask of the process.

A common mistake is to specify the same mode as for a file: read and write
permissions only. But for a directory, we normally want at least one of the execute bits
enabled, to allow access to filenames within the directory. (See Exercise 4.16.)

The user ID and group ID of the new directory are established according to the
rules we described in Section 4.6.

Solaris 9 and Linux 2.4.22 also have the new directory inherit the set-group-ID bit from the
parent directory. This is so that files created in the new directory will inherit the group 1D of
that directory. With Linux, the file system implementation determines whether this is
supported. For example, the ext2 and ext3 file systems allow this behavior to be controlled
by an option to the mount(1) command. With the Linux implementation of the UFS file
system, however, the behavior is not selectable; it inherits the set-group-ID bit to mimic the
historical BSD implementation, where the group ID of a directory is inherited from the parent
directory.

BSD-based implementations don’t propagate the set-group-ID bit; they simply inherit the
group ID as a matter of policy. Because FreeBSD 5.2.1 and Mac OS X 10.3 are based on 4.4BSD,
they do not require this inheriting of the set-group-ID bit. On these platforms, newly created
files and directories always inherit the group ID of the parent directory, regardless of the
set-group-1D bit.

Earlier versions of the UNIX System did not have the mkdir function. It was introduced with
4.2BSD and SVR3. In the earlier versions, a process had to call the mknod function to create a
new directory. But use of the mknod function was restricted to superuser processes. To
circumvent this, the normal command that created a directory, mkdir(1), had to be owned by
root with the set-user-ID bit on. To create a directory from a process, the mkdir(1) command
had to be invoked with the system(3) function.

120

Files and Directories Chapter 4

4.21

An empty directory is deleted with the rmdir function. Recall that an empty
directory is one that contains entries only for dot and dot-dot.

#include <unistd.h>
int rmdir (const char *pathname) ;

Returns: 0 if OK, -1 on error

If the link count of the directory becomes 0 with this call, and if no other process has the
directory open, then the space occupied by the directory is freed. If one or more
processes have the directory open when the link count reaches 0, the last link is
removed and the dot and dot-dot entries are removed before this function returns.
Additionally, no new files can be created in the directory. The directory is not freed,
however, until the last process closes it. (Even though some other process has the
directory open, it can’t be doing much in the directory, as the directory had to be empty
for the rmdir function to succeed.)

Reading Directories

Directories can be read by anyone who has access permission to read the directory. But
only the kernel can write to a directory, to preserve file system sanity. Recall from
Section 4.5 that the write permission bits and execute permission bits for a directory
determine if we can create new files in the directory and remove files from the
directory—they don't specify if we can write to the directory itself.

The actual format of a directory depends on the UNIX System implementation and
the design of the file system. Earlier systems, such as Version 7, had a simple structure:
each directory entry was 16 bytes, with 14 bytes for the filename and 2 bytes for the
i-node number. When longer filenames were added to 4.2BSD, each entry became
variable length, which means that any program that reads a directory is now system
dependent. To simplify this, a set of directory routines were developed and are part of
POSIX.1. Many implementations prevent applications from using the read function to
access the contents of directories, thereby further isolating applications from the
implementation-specific details of directory formats.

#include <dirent.h>
DIR *opendir (const char *pathname) ;
Returns: pointer if OK, NULL on error
struct dirent *readdir(DIR *dp);
Returns: pointer if OK, NULL at end of directory or error
void rewinddir (DIR *dp);
int closedir (DIR *dp);
Returns: 0 if OK, -1 on error
long telldir (DIR *dp);
Returns: current location in directory associated with dp

void seekdir (DIR *dp, long loc) ;

Section 4.21 Reading Directories 121

The telldir and seekdir functions are not part of the base POSIX.1 standard. They
are XSI extensions in the Single UNIX Specifications, so all conforming UNIX System
implementations are expected to provide them.

Recall our use of several of these functions in the program shown in Figure 1.3, our
bare-bones implementation of the 1s command.

The dirent structure defined in the file <dirent.h> is implementation
dependent. Implementations define the structure to contain at least the following two
members:

struct dirent {
ino_t d_ino; : /* i-node number */
char d name [NAME_MAX + 1]; /* null-terminated filename */

}

The d_ino entry is not defined by POSIX.1, since it'’s an implementation feature, but it is
defined in the XSI extension to POSIX.1. POSIX.1 defines only the d_name entry in this
structure.

Note that NAME_MAX is not a defined constant with Solaris—its value depends on
the file system in which the directory resides, and its value is usually obtained from the
fpathconf function. A common value for NAME MAX is 255. (Recall Figure 2.14.)
Since the filename is null terminated, however, it doesn’t matter how the array d_name
is defined in the header, because the array size doesn’t indicate the length of the
filename.

The DIR structure is an internal structure used by these six functions to maintain
information about the directory being read. The purpose of the DIR structure is similar
to that of the FILE structure maintained by the standard 1/O library, which we describe
in Chapter 5.

The pointer to a DIR structure that is returned by opendir is then used with the
other five functions. The opendir function initializes things so that the first readdir
reads the first entry in the directory. The ordering of entries within the directory is
implementation dependent and is usually not alphabetical.

Example

We'll use these directory routines to write a program that traverses a file hierarchy. The
goal is to produce the count of the various types of files that we show in Figure 4.4. The
program shown in Figure 4.22 takes a single argument—the starting pathname-—and
recursively descends the hierarchy from that point. Solaris provides a function, ftw(3),
that performs the actual traversal of the hierarchy, calling a user-defined function for
each file. The problem with this function is that it calls the stat function for each file,
which causes the program to follow symbolic links. For example, if we start at the root
and have a symbolic link named /1ib that points to /usr/1ib, all the files in the
directory /usr/1ib are counted twice. To correct this, Solaris provides an additional
function, nf tw(3), with an option that stops it from following symbolic links. Although
we could use nftw, we'll write our own simple file walker to show the use of the
directory routines.

122 Files and Directories Chapter 4

In the Single UNIX Specification, both ftw and nftw are included in the XS] extensions to the
base POSIX.1 specification. Implementations are included in Solaris 9 and Linux 2422
BSD-based systems have a different function, £ts(3), that provides similar functionality. It is
available in FreeBSD 5.2.1, Mac OS X 10.3, and Linux 2.4.22.

#include "apue.h"
#include <dirent.h>
#include <limits.h>

/* function type that is called for each filename */
typedef int Myfunc(const char *, const struct stat *, int);

static Myfunc myfunc;
static int myftw(char *, Myfunc *);
static int dopath (Myfunc *);

static long nreg, ndir, nblk, nchr, nfifo, nslink, nsock, ntot;

int
main(int argc, char *argv(])
{
int ret;
if (argc != 2)
err_quit("usage: ftw <starting-pathnames");
ret = myftw(argv[l], myfunc); /* does it all */

ntot = nreg + ndir + nblk + nchr + nfifo + nslink + nsock;

if (ntot == 0)
ntot = 1; /* avoid divide by 0; print 0 for all counts */
printf ("regular files = %71d, $5.2f %%\n", nreg,
nreg*100.0/ntot) ;
printf ("directories = %714, %5.2f %%\n", ndir,
ndir*100.0/ntot) ;
printf ("block special = $%71d, %5.2f %%\n", nblk,

nblk*100.0/ntot) ;
printf ("char special
nchr*100.0/ntot) ;
printf ("FIFOs = %71d, %5.2f %%\n", nfifo,
nfifo*100.0/ntot) ;
printf ("symbolic links
nslink*100.0/ntot) ;
printf ("sockets = %71d, %5.2f %%\n", nsock,
nsock*100.0/ntot) ;

%$71d, %5.2f %%\n", nchr,

$71d, %5.2f %%\n", nslink,

exit (ret) ;

}

/*

* Descend through the hierarchy, starting at "pathname" .
* The caller’s func() is called for every file.

*/

#define FTW F 1 /* file other than directory */

Section 4.21 Reading Directories 123

#define FTW D 2 /* directory */

#tdefine FTW DNR 3 /* directory that can’t be read */

#define FTW NS 4 /* file that we can’'t stat */

static char *fullpath; /* contains full pathname for every file */
static int /* we return whatever func() returns */

myftw(char *pathname, Myfunc *func)

{

int len;

fullpath = path_alloc{&len); /* malloc’s for PATH MAX+1l bytes */
/* (Figure 2.15) */

strncpy (fullpath, pathname, len); /* protect against */

fullpath{len-1] = 0; /* buffer overrun */

return (dopath (func)) ;

* Descend through the hierarchy, starting at "fullpath".
* If "fullpath" is anything other than a directory, we lstat() it,

* call func(), and return. For a directory, we call ourself
* recursively for each name in the directory.
*/
static int /* we return whatever func () returns */

dopath (Myfunc* func)

{

struct stat statbuf;
struct dirent *dirp;
DIR *dp;

int ret;
char *ptr;

if (lstat (fullpath, &statbuf) < 0) /* stat error */
return (func (fullpath, &statbuf, FTW_NS));

if (S_ISDIR(statbuf.st _mode) == 0) /* not a directory */
return (func (fullpath, &statbuf, FTW_F));

/*
* Tt’s a directory. First call func() for the directory,
* then process each filename in the directory.

*/
if ((ret = func(fullpath, &statbuf, FTW_D)) != 0)
return(ret);
ptr = fullpath + strlen(fullpath); /* point to end of fullpath * /
*ptr++ = /75
*ptr = 0
if ((dp = opendir(fullpath)) == NULL) /* can't read directory */

return (func (fullpath, &statbuf, FTW_DNR));

while ((dirp = readdir(dp)) != NULL) {
if (stremp(dirp->d_name, ".") == 0 |

124 Files and Directories Chapter 4

stremp (dirp->d_name, "..") == 0)
continue; /* ignore dot and dot-dot */
strepy (ptr, dirp->d_name); /* append name after slash * /
if ((ret = dopath(func)) != 0) /* recursive */

break; /* time to leave */

}

ptr([-1] = 0; /* erase everything from slash onwards */

if (closedir(dp) < 0)
err_ret("can’t close directory $%s", fullpath);

return(ret) ;

}

static int
myfunc (const char *pathname, const struct stat *statptr, int type)

{

switch (type) {

case FTW_F:
switch (statptr->st_mode & S_IFMT) {
case S_IFREG: nreg++; break;
case S_IFBLK: nblk++; break;
case S_IFCHR: nchr++; break;
case S_IFIFO: nfifo++; break;
case S_IFLNK: nslink++; break;
case S _IFSOCK: nsock++; break;

case S IFDIR:
err_dump ("for S_IFDIR for %s", pathname);
/* directories should have type = FTW D */

}

break;

case FTW D:
ndir++;
break;

case FTW_DNR:
err_ret("can’'t read directory $%s", pathname);
break;

case FTW_NS:
err_ret ("stat error for %s", pathname);
break;

default:
err_dump ("unknown type %d for pathname %$s", type, pathname);
}

return(0) ;

Figure 4.22 Recursively descend a directory hierarchy, counting file types

Section 4.22 chdir, fchdir, and getcwd Functions 125

4.22

We have provided more generality in this program than needed. This was done to
illustrate the ftw function. For example, the function myfunc always returns 0, even
though the function that calls it is prepared to handle a nonzero return. O

For additional information on descending through a file system and the use of this
technique in many standard UNIX System commands—find, 1s, tar, and so
on—refer to Fowler, Korn, and Vo [1989].

chdir, fchdir, and getcwd Functions

Every process has a current working directory. This directory is where the search for all
relative pathnames starts (all pathnames that do not begin with a slash). When a user
logs in to a UNIX system, the current working directory normally starts at the directory
specified by the sixth field in the /etc/passwd file—the user’s home directory. Tlhe
current working directory is an attribute of a process; the home directory is an attribute
of a login name.

We can change the current working directory of the calling process by calling the
chdir or fchdir functions.

#include <unistd.h>
int chdir (const char *pathname) ;
int fchdir (int filedes) ;
Both return: 0 if OK, ~1 on error

We can specify the new current working directory either as a pathname or through an
open file descriptor.

The £chdir function is not part of the base POSIX.1 specification. It is an XSI extension in the
Single UNIX Specification. All four platforms discussed in this book support fchdir.

Example

Because it is an attribute of a process, the current working directory cannot affect
processes that invoke the process that executes the chdir. (We describe the
relationship between processes in more detail in Chapter 8) This means that the
program in Figure 4.23 doesn’t do what we might expect.

#include "apue.h"

int

main (void)

{
if (chdir("/tmp") < 0)

err_sys("chdir failed");

printf ("chdir to /tup succeeded\n") ;
exit (0);

Figure 4.23 Example of chdir function

126

Files and Directories » Chapter 4

If we compile it and call the executable mycd, we get the following:

$ pwd

/usr/lib

$ mycd

chdir to /tmp succeeded
$ pwd

/usr/1lib

The current working directory for the shell that executed the mycd program didn’t
change. This is a side effect of the way that the shell executes programs. Each program
is run in a separate process, so the current working directory of the shell is unaffected
by the call to chdir in the program. For this reason, the chdir function has to be
called directly from the shell, so the cd command is built into the shells. O

Because the kernel must maintain knowledge of the current working directory, we
should be able to fetch its current value. Unfortunately, the kernel doesn’t maintain the
full pathname of the directory. Instead, the kernel keeps information about the
directory, such as a pointer to the directory’s v-node.

What we need is a function that starts at the current working directory (dot) and
works its way up the directory hierarchy, using dot-dot to move up one level. At each
directory, the function reads the directory entries until it finds the name that
corresponds to the i-node of the directory that it just came from. ,Repeating this
procedure until the root is encountered yields the entire absolute pathname of the
current working directory. Fortunately, a function is already provided for us that does
this task.

#include <unistd.h>

char *getcwd(char *buf, size t size);

Returns: buf if OK, NULL on error

We must pass to this function the address of a buffer, buf, and its size (in bytes). The
buffer must be large enough to accommodate the absolute pathname plus a terminating
null byte, or an error is returned. (Recall the discussion of allocating space for a
maximum-sized pathname in Section 2.5.5.)

Some older implementations of getcwd allow the first argument buf to be NULL. In this case,

the function calls malloc to allocate size number of bytes dynamically. This is not part of
POSIX.1 or the Single UNIX Specification and should be avoided.

Example

The program in Figure 4.24 changes to a specific directory and then calls getcwd to
print the working directory. If we run the program, we get

$./a.out

cwd = /var/spool/uucppublic

$ 1ls -1 /usr/spool

lrwxrwxrwx 1 root 12 Jan 31 07:57 /usr/spool -> ../var/spool

Section 4.23 Device Special Files 127

4.23

#include "apue.h"
int
main{void)
{
char *ptr;
int size;
if (chdir ("/usr/spool/uucppublic") < 0)

err_sys("chdir failed");

ptr = path_alloc(&size); /* our own function */
if (getcwd(ptr, size) == NULL)
err_sys("getcwd failed");

printf ("cwd = %s\n", ptr);
exit (0);

Figure 4.24 Example of getcwd function

Note that chdir follows the symbolic link—as we expect it to, from Figure 4.17—but
when it goes up the directory tree, getcwd has no idea when it hits the /var/spool
directory that it is pointed to by the symboiic link /usr/spool. This is a characteristic
of symbolic links. o

The getcwd function is useful when we have an application that needs to return to
the location in the file system where it started out. We can save the starting location by
calling getcwd before we change our working directory. After we complete our
processing, we can pass the pathname obtained from getcwd to chdir to return to our
starting location in the file system.

The fchdir function provides us with an easy way to accomplish this task. Instead
of calling getcwd, we can open the current directory and save the file descriptor before
we change to a different location in the file system. When we want to return to where
we started, we can simply pass the file descriptor to fchdir.

Device Special Files

The two fields st_dev and st_rdev are often confused. We'll need to use these fields
in Section 18.9 when we write the t tyname function. The rules are simple.

o Every file system is known by its major and minor device numbers, which are
encoded in the primitive system data type dev_t. The major number identifies
the device driver and sometimes encodes which peripheral board to
communicate with; the minor number identifies the specific subdevice. Recall
from Figure 4.13 that a disk drive often contains several file systems. Each file
system on the same disk drive would usually have the same major number, but
a different minor number.

128 Files and Directories

Chapter 4

Example

* We can usually access the major and minor device numbers through two macros
defined by most implementations: major and minor. This means that we don’t
care how the two numbers are stored in a dev_t object.

Early systems stored the device number in a 16-bit integer, with 8 bits for the major
number and 8 bits for the minor number. FreeBSD 5.2.1 and Mac OS X 10.3 use a 32-bit
integer, with 8 bits for the major number and 24 bits for the minor number. On 32-bit
systems, Solaris 9 uses a 32-bit integer for dev_t, with 14 bits designated as the major
number and 18 bits designated as the minor number. On 64-bit systems, Solaris 9
represents dev_t as a 64-bit integer, with 32 bits for each number. On Linux 2.4.22,
although dev_t is a 64-bit integer, currently the major and minor numbers are each only
8 bits.

POSIX.1 states that the dev_t type exists, but doesn’t define what it contains or how to
get at its contents. The macros major and minor are defined by most implementations.

Which header they are defined in depends on the system. They can be found in
<sys/types.h> on BSD-based systems. Solaris defines them in <sys/mkdev.hs.

Linux defines these macros in <sys/sysmacros.hs, which is included by

<sys/types.h>.

The st_dev value for every filename on a system is the device number of the

file system containing that filename and its corresponding i-node.

Only character special files and block special files have an st_rdev value. This

value contains the device number for the actual device.

The program in Figure 4.25 prints the device number for each command-line argument.
Additionally, if the argument refers to a character special file or a block special file, the
st_rdev value for the special file is also printed.

#include "apue.h"
#ifdef SOLARIS
#include <sys/mkdev.h>
#endif

int

main(int argc, char *argv(])

{

int i;
struct stat buf;

for (i = 1; i < argc; i++) {
printf ("%s: ", argv([i]);
if (stat(argv([i], &buf) < 0) {
err_ret ("stat error");
continue;

}

printf ("dev = %d/%d", major(buf.st dev),

minor (buf.st_dev));

Section 4.23 Device Special Files 129

if (S_ISCHR(buf.st_mode) || S_ISBLK(buf.st_mode)) {
printf (" (%s) rdev = %d/%d4d",
(S_ISCHR(buf.st_mode)) ? "character" : . "block",

major (buf.st_rdev), minor (buf.st_rdev));

printf ("\n");

}

exit (0) ;

Figure 425 Print st_devand st_rdev values

Running this program gives us the following output:

$./a.out / /home/sar /dev/tty[01]

/: dev = 3/3

/home/sar: dev = 3/4

/dev/tty0: dev 0/7 (character) rdev = 4/0

/dev/ttyl: dev 0/7 (character) rdev = 4/1

$ mount which directories are mounted on which devices?
/dev/hda3 on / type ext2 (rw,noatime)

/dev/hda4 on /home type ext2 (rw,noatime)

$ 1s -1L /dev/ttyl[01] /dev/hda[34]

brw------- 1 root 3, 3 Dec 31 1969 /dev/hda3
brw------- 1 root 3, 4 Dec 31 1969 /dev/hda4d
cYw------- 1 root 4, 0 Dec 31 1969 /dev/tty0
crw------- 1 root 4, 1 Jan 18 15:36 /dev/ttyl

The first two arguments to the program are directories (/ and /home/sar), and the
next two are the device names /dev/tty[01]. (We use the shell’s regular expression
language to shorten the amount of typing we need to do. The shell will expand the
string /dev/tty [01] to /dev/tty0 /dev/ttyl.)

We expect the devices to be character special files. The output from the program
shows that the root directory has a different device number than does the /home/sar
directory. This indicates that they are on different file systems. Running the mount(1)
command verifies this.

We then use 1s to look at the two disk devices reported by mount and the two
terminal devices. The two disk devices are block special files, and the two terminal
devices are character special files. (Normally, the only types of devices that are block
special files are those that can contain random-access file systems: disk drives, floppy
disk drives, and CD-ROMs, for example. Some older versions of the UNIX System
supported magnetic tapes for file systems, but this was never widely used.)

Note that the filenames and i-nodes for the two terminal devices (st _dev) are on
device 0/7—the devfs pseudo file system, which implements the /dev—but that their
actual device numbers are 4/0 and 4/1. o

130

Files and Directories

Chapter 4

4.24 Summary of File Access Permission Bits

4.25

We've covered all the file access permission bits, some of which serve multiple
purposes. Figure 4.26 summarizes all these permission bits and their interpretation
when applied to a regular file and a directory.

Constant Description Effect on regular file Effect on directory

S_ISUID | set-user-ID set effective user ID on execution (not used)

S_ISGID | set-group-ID if group-execute set then set effec- set group ID of new files created in di-
tive group ID on execution; oth- rectory to group ID of directory
erwise enable mandatory record
locking (if supported)

S_ISVTX | sticky bit control caching of file contents restrict removal and renaming of files in
(if supported) directory

S_IRUSR | user-read user permission to read file user permission to read directory

entries

S_IWUSR | user-write user permission to write file user permission to remove and create

files in directory

S_IXUSR | user-execute user permission to execute file user permission to search for given

pathname in directory

S_IRGRP | group-read group permission to read file group permission to read directory en-

tries

S_IWGRP | group-write group permission to write file group permission to remove and create

files in directory

S_IXGRP | group-execute | group permission to execute file group permission to search for given

pathname in directory

S_IROTH | other-read other permission to read file other permission to read directory en-

tries

S_IWOTH | other-write other permission to write file other permission to remove and create

files in directory

S_IXOTH | other-execute | other permission to execute file other permission to search for given

pathname in directory

Figure 4.26 Summary of file access permission bits

The final nine constants can also be grouped into threes, since

S_IRWXU
S_IRWXG
S_IRWXO

Summary

S_IRUSR | S_IWUSR | S_IXUSR
S_IRGRP | S_IWGRP | S_IXGRP
S_IROTH | S_IWOTH | S_IXOTH

'

This chapter has centered around the stat function. We've gone through each member
in the stat structure in detail. This in turn led us to examine all the attributes of UNIX
files. A thorough understanding of all the properties of a file and all the functions that

operate on files is essential to UNIX programming.

Chapter 4

Exercises 131

Exercises

41

4.2

43

44

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

413
4.14

4.15

4.16

Modify the program in Figure 4.3 to use stat instead of 1stat. What changes if one of the
command-line arguments is a symbolic link?

What happens if the file mode creation mask is set to 777 (octal)? Verify the results using
your shell’s umask command.

Verify that turning off user-read permission for a file that you own denies your access to the
file.

Run the program in Figure 4.9 after creating the files foo and bar. What happens?

In Section 4.12, we said that a file size of 0 is valid for a regular file. We also said that the
st_size field is defined for directories and symbolic links. Should we ever see a file size
of 0 for a directory or a symbolic link?

Write a utility like cp(1) that copies a file containing holes, without writing the bytes of 0 to
the output file.

Note in output from the 1s command in Section 4.12 that the files core and core.copy

have different access permissions. If the umask value didn’t change between the creation of

the two files, explain how the difference could have occurred.

When running the program in Figure 4.16, we check the available disk space with the d£(1)
command. Why didn't we use the du(1) command?

In Figure 4.20, we show the unlink function as modifying the changed-status time of the
file itself. How can this happen?

In Section 4.21, how does the system’s limit on the number of open files affect the myftw
function?

In Section 4.21, our version of ftw never changes its directory. Modify this routine so that
each time it encounters a directory, it does a chdir to that directory, allowing it to use the
filename and not the pathname for each call to 1stat. When all the entries in a directory
have been processed, execute chdir (".."). Compare the time used by this version and
the version in the text.

Each process also has a root directory that is used for resolution of absolute pathnames.
This root directory can be changed with the chroot function. Look up the description for
this function in your manuals. When might this function be useful?

How can you set only one of the two time values with the ut ime function?

Some versions of the £inger(1) command output “New mail received ...” and “unread
since ..”” where ... are the corresponding times and dates. How can the program determine
these two times and dates?

Examine the archive formats by the cpio(l) and tar(l) commands. (These descriptions are
usually found in Section 5 of the UNIX Programmer’s Manual.) How many of the three
possible time values are saved for each file? When a file is restored, what value do you
think the access time is set to, and why?

Does the UNIX System have a fundamental Jimitation on the depth of a directory tree? To
find out, write a program that creates a directory and then changes to that directory, in a
loop. Make certain that the length of the absolute pathname of the leaf of this directory is

132 Files and Directories Chapter 4

417

greater than your system’s PATH_MAX limit. Can you call getcwd to fetch the directory’s
pathname? How do the standard UNIX System tools deal with this long pathname? Can
you archive the directory using either tar or cpio?

In Section 3.16, we described the /dev/£fd feature. For any user to be able to access these
files, their permissions must be rw-rw-rw-. Some programs that create an output file
delete the file first, in case it already exists, ignoring the return code:

unlink (path) ;
if ((fd = creat(path, FILE MODE)) < 0)
err_sys(...);

What happens if path is /dev/fd/1?

5.1

Standard I/O Library

Introduction

In this chapter, we describe the standard 1/0 library. This library is specified by the ISO
C standard because it has been implemented on many operating systems other than the
UNIX System. Additional interfaces are defined as extensions to the ISO C standard by
the Single UNIX Specification.

The standard 1/0O library handles such details as buffer allocation and performing
1/0 in optimal-sized chunks, obviating our need to worry about using the correct block
size (as in Section 3.9). This makes the library easy to use, but at the same time
introduces another set of problems if we’re not cognizant of what'’s going on.

The standard 1/0 library was written by Dennis Ritchie around 1975. It was a major revision
of the Portable 1/O library written by Mike Lesk. Surprisingly, little has changed in the
standard 1/0 library after 30 years.

Streams and FILE Objects

In Chapter 3, all the 1/O routines centered around file descriptors. When a file is
opened, a file descriptor is returned, and that descriptor is then used for all subsequent
1/0O operations. With the standard 1/0 library, the discussion centers around streams.
(Do not confuse the standard 1/0 term stream with the STREAMS 1/0 system that is
part of System V and standardized in the XSI STREAMS option in the Single UNIX
Specification.) When we open or create a file with the standard 1/0O library, we say that
we have associated a stream with the file.

With the ASCII character set, a single character is represented by a single byte. With
international character sets, a character can be represented by more than one byte.

133

134 Standard 1/0 Library Chapter 5

Standard 1/O file streams can be used with single-byte and multibyte (“wide”)
character sets. A stream’s orientation determines whether the characters that are read
and written are single-byte or multibyte. Initially, when a stream is created, it has no
orientation. If a multibyte I/O function (see <wchar.h>) is used on a stream without
orientation, the stream’s orientation is set to wide-oriented. If a byte I/O function is
used on a stream without orientation, the stream’s orientation is set to byte-oriented.
Only two functions can change the orientation once set. The freopen function
(discussed shortly) will clear a stream’s orientation; the fwide function can be used to
set a stream’s orientation.

#include <stdio.h>
#include <wchar.h>

int fwide (FILE *fp, int mode) ;

Returns: positive if stream is wide-oriented,
negative if stream is byte-oriented,
or 0 if stream has no orientation

The fwide function performs different tasks, depending on the value of the mode
argument.

* If the mode argument is negative, fwide will try to make the specified stream
byte-oriented.

* If the mode argument is positive, fwide will try to make the specified stream
wide-oriented.

* If the mode argument is zero, fwide will not try to set the orientation, but will
still return a value identifying the stream’s orientation.

Note that fwide will not change the orientation of a stream that is already oriented.
Also note that there is no error return. Consider what would happen if the stream is
invalid. The only recourse we have is to clear errno before calling fwide and check
the value of errno when we return. Throughout the rest of this book, we will deal only
with byte-oriented streams.

When we open a stream, the standard 1/O function fopen returns a pointer to a
FILE object. This object is normally a-structure that contains all the information
required by the standard I/0O library to manage the stream: the file descriptor used for
actual 1/0O, a pointer to a buffer for the stream, the size of the buffer, a count of the
number of characters currently in the buffer, an error flag, and the like.

Application software should never need to examine a FILE object. To reference the
stream, we pass its FILE pointer as an argument to each standard 1/O function.
Throughout this text, we'll refer to a pointer to a FILE object, the type FILE * as a file
printer.

Throughout this chapter, we describe the standard 1/0 library in the context of a
UNIX system. As we mentioned, this library has already been ported to a wide variety
of other operating systems. But to provide some insight about how this library can be
implemented, we will talk about its typical implementation on a UNIX system.

Buffering 135

5.3

5.4

Standard Input, Standard Output, and Standard Error

Three streams are predefined and automatically available to a process: standard input,
standard output, and standard error. These streams refer to the same files as the file
descriptors STDIN_FILENO, STDOUT_FILENO, and STDERR_FILENO, which we
mentioned in Section 3.2.

These three standard I/O streams are referenced through the predefined file
pointers stdin, stdout, and stderr. The file pointers are defined in the <stdio.h>
header.

Buffering

The goal of the buffering provided by the standard 1/0 library is to use the minimum
number of read and write calls. (Recall Figure 3.5, where we showed the amount of
CPU time required to perform 1/O using various buffer sizes.) Also, it tries to do its
buffering automatically for each 1/0 stream, obviating the need for the application to
worry about it. Unfortunately, the single aspect of the standard 1/O library that
generates the most confusion is its buffering.

Three types of buffering are provided:

1. Fully buffered. In this case, actual 1/0 takes place when the standard 1/O
buffer is filled. Files residing on disk are normally fully buffered by the
standard 1/0O library. The buffer used is usually obtained by one of the standard
1/0 functions calling malloc (Section 7.8) the first time 1/0 is performed on a
stream.

The term flush describes the writing of a standard 1/0 buffer. A buffer can be
flushed automatically by the standard 1 /O routines, such as when a buffer fills,
or we can call the function £ f£lush to flush a stream. Unfortunately, in the
UNIX environment, flush means two different things. In terms of the standard
1/0 library, it means writing out the contents of a buffer, which may be partially
filled. In terms of the terminal driver, such as the tcflush function in
Chapter 18, it means to discard the data that’s already stored in a buffer.

2. Line buffered. In this case, the standard 1/0O library performs 1/0O when a
newline character is encountered on input or output. This allows us to outputa
single character ata time (with the standard I/0O fputc function), knowing that
actual 1/0 will take place only when we finish writing each line. Line buffering
is typically used on a stream when it refers to a terminal: standard input and
standard output, for example.

Line buffering comes with two caveats. First, the size of the buffer that the
standard 1/0 library is using to collect each line is fixed, so I/O might take
place if we fill this buffer before writing a newline. Second, whenever input is
requested through the standard I/0 library from either (a) an unbuffered stream

136

Standard 1/O Library Chapter 5

or (b) a line-buffered stream (that requires data to be requested from the kernel),
all line-buffered output streams are flushed. The reason for the qualifier on (b)
is that the requested data may already be in the buffer, which doesn’t require
data to be read from the kernel. Obviously, any input from an unbuffered
stream, item (a), requires data to be obtained from the kernel.

3. Unbuffered. The standard I/O library does not buffer the characters. If we
write 15 characters with the standard 1/O fputs function, for example, we
expect these 15 characters to be output as soon as possible, probably with the
write function from Section 3.8.

The standard error stream, for example, is normally unbuffered. This is so that
any error messages are displayed as quickly as possible, regardless of whether
they contain a newline.

ISO C requires the following buffering characteristics.

* Standard input and standard output are fully buffered, if and only if they do not
refer to an interactive device.

* Standard error is never fully buffered.

This, however, doesn’t tell us whether standard input and standard output can be
unbuffered or line buffered if they refer to an interactive device and whether standard
error should be unbuffered or line buffered. Most implementations default to the
following types of buffering.

* Standard error is always unbuffered.

* All other streams are line buffered if they refer to a terminal device; otherwise,
they are fully buffered.

The four platforms discussed in this book follow these conventions for standard 1/0 buffering:
standard error is unbuffered, streams open to terminal devices are line buffered, and all other
streams are fully buffered.

We explore standard I/O buffering in more detail in Section 5.12 and Figure 5.11.
If we don’t like these defaults for any given stream, we can change the buffering by
calling either of the following two functions.

#include <stdio.h»>
void setbuf (FILE *restrict fp, char *restrict buf);

int setvbuf (FILE *restrict fp, char *restrict buf, int mode,
size t size);

Returns: 0 if OK, nonzero on error

These functions must be called after the stream has been opened (obviously, since each
requires a valid file pointer as its first argument) but before any other operation is
performed on the stream.

Section 5.4 Buffering 137

With setbuf, we can turn buffering on or off. To enable buffering, buf must point
to a buffer of length BUFSIZ, a constant defined in <stdio.h>. Normally, the stream is
then fully buffered, but some systems may set line buffering if the stream is associated
with a terminal device. To disable buffering, we set buf to NULL.

With setvbuf, we specify exactly which type of buffering we want. This is done
with the mode argument:

_IOFBF fully buffered

_IOLBF line buffered
_IONBF unbuffered

If we specify an unbuffered stream, the buf and size arguments are ignored. If we
specify fully buffered or line buffered, buf and size can optionally specify a buffer and its
size. If the stream is buffered and buf is NULL, the standard I/O library will
automatically allocate its own buffer of the appropriate size for the stream. By
appropriate size, we mean the value specified by the constant BUFSIZ.

Some C library implementations use the value from the st_blksize member of the stat
structure (see Section 4.2) to determine the optimal standard 1/O buffer size. As we will see
later in this chapter, the GNU C library uses this method.

Figure 5.1 summarizes the actions of these two functions and their various options.

Function mode buf Buffer and length Type of buffering
non-null | user buf of length BUFSIZ fully buffered or line buffered
setbuf
NULL (no buffer) unbuffered
-null buf of length s
OFEF non-nu user buf of length size . fully buffered
- NULL system buffer of appropriate length
setvbuf OLBF non-null | user buf of length size ' line buffered
- NULL system buffer of appropriate length
_IONBF | (ignored) | (no buffer) unbuffered

Figure 5.1 Summary of the setbuf and setvbuf functions

Be aware that if we allocate a standard I/O buffer as an automatic variable within a
function, we have to close the stream before returning from the function. (We'll discuss
this more in Section 7.8.) Also, some implementations use part of the buffer for internal
bookkeeping, so the actual number of bytes of data that can be stored in the buffer is
less than size. In general, we should let the system choose the buffer size and
automatically allocate the buffer. When we do this, the standard I/O library
automatically releases the buffer when we close the stream.

At any time, we can force a stream to be flushed.

#include <stdio.h>

int fflush(FILE *fp);

Returns: 0 if OK, EOF on error

This function causes any unwritten data for the stream to be passed to the kernel. Asa
special case, if fp is NULL, this function causes all output streams to be flushed.

138 Standard I/O Library Chapter 5

5.5 Opening a Stream

The following three functions open a standard 1/O stream.

#include <stdio.h»>
FILE *fopen(const char *restrict pathname, const char *restrict fype);

FILE *freopen(const char *restrict pathname, const char *restrict type,
FILE *restrict fp);

FILE *fdopen (int filedes, const char *type) ;

All three return: file pointer if OK, NULL on error

The differences in these three functions are as follows.

1. The fopen function opens a specified file.

2 The freopen function opens a specified file on a specified stream, closing the
stream first if it is already open. If the stream previously had an orientation,
freopen clears it. This function is typically used to open a specified file as one
of the predefined streams: standard input, standard output, or standard error.

3. The fdopen function takes an existing file descriptor, which we could obtain
from the open, dup, dup2, fcntl, pipe, socket, socketpair, or accept
functions, and associates a standard I/O stream with the descriptor. This
function is often used with descriptors that are returned by the functions that
create pipes and network communication channels. Because these special types
of files cannot be opened with the standard I/O fopen function, we have to call
the device-specific function to obtain a file descriptor, and then associate this
descriptor with a standard I/O stream using fdopen.

Both fopen and freopen are part of ISO C; fdopen is part of POSIX.1, since ISO C doesn't
deal with file descriptors.

ISO C specifies 15 values for the type argument, shown in Figure 5.2.

type Description
xr or rb open for reading
w or wb truncate to 0 length or create for writing
a or ab append; open for writing at end of file, or create for writing

r+ or r+b or rb+ | open for reading and writing
w+ Or w+b or wb+ | truncate to 0 length or create for reading and writing
a+ or a+b or ab+ | open or create for reading and writing at end of file

Figure 5.2 The type argument for opening a standard /O stream

Using the character b as part of the type allows the standard 1/O system to differentiate
between a text file and a binary file. Since the UNIX kernel doesn’t differentiate
between these types of files, specifying the character b as part of the type has no effect.

Section 5.5 Opening a Stream 139

With fdopen, the meanings of the type argument differ slightly. The descriptor has
already been opened, so opening for write does not truncate the file. (If the descriptor
was created by the open function, for example, and the file already existed, the
0 _TRUNC flag would control whether or not the file was truncated. The fdopen
function cannot simply truncate any file it opens for writing.) Also, the standard 1/0
append mode cannot create the file (since the file has to exist if a descriptor refers to it).

When a file is opened with a type of append, each write will take place at the then
current end of file. If multiple processes open the same file with the standard 1/0
append mode, the data from each process will be correctly written to the file.

Versions of fopen from Berkeley before 4.4BSD and the simple version shown on page 177 of
Kernighan and Ritchie [1988] do not handle the append mode correctly. These versions do an
1seek to the end of file when the stream is opened. To correctly support the append mode
when multiple processes are involved, the file must be opened with the 0_APPEND flag, which
we discussed in Section 3.3. Doing an lseek before each write won’t work either, as we
discussed in Section 3.11.

When a file is opened for reading and writing (the plus sign in the type), the
following restrictions apply.

 Output cannot be directly followed by input without an intervening f£flush,
fseek, fsetpos, or rewind.

e Input cannot be directly followed by output without an intervening fseek,
fsetpos, or rewind, or an input operation that encounters an end of file.

We can summarize the six ways to open a stream from Figure 5.2 in Figure 5.3.

Restriction r w a r+ | w+ | a+
file must already exist . .
previous contents of file discarded . o
stream can be read
stream can be written . . . D .
stream can be written only at end . .

Figure 5.3 Six ways to open a standard 1/0 stream

Note that if a new file is created by specifying a type of either w or a, we are not able to
specify the file’s access permission bits, as we were able to do with the open function
and the creat function in Chapter 3.

By default, the stream that is opened is fully buffered, unless it refers to a terminal
device, in which case it is line buffered. Once the stream is opened, but before we do
any other operation on the stream, we can change the buffering if we want to, with the
setbuf or setvbuf functions from the previous section.

An open stream is closed by calling fclose.

#include <stdio.h>

int fclose(FILE *fp);

Returns: 0 if OK, EOF on error

140 Standard 1/O Library Chapter 5

Any buffered output data is flushed before the file is closed. Any input data that may
be buffered is discarded. If the standard I/O library had automatically allocated a
buffer for the stream, that buffer is released.

When a process terminates normally, either by calling the exit function directly or
by returning from the main function, ali standard I/O streams with unwritten buffered
data are flushed, and all open standard I/O streams are closed.

5.6 Reading and Writing a Stream

Once we open a stream, we can choose from among three types of unformatted I/O:

1. Character-at-a-time I/O. We can read or write one character at a time, with the
standard I/O functions handling all the buffering, if the stream is buffered.

2. Line-at-a-time 1/O. If we want to read or write a line at a time, we use fgets
and fputs. Each line is terminated with a newline character, and we have to
specify the maximum line length that we can handle when we call fgets. We
describe these two functions in Section 5.7.

3. Direct I/O. This type of I/O is supported by the fread and fwrite functions.
For each 1/0 operation, we read or write some number of objects, where each
object is of a specified size. These two functions are often used for binary files
where we read or write a structure with each operation. We dedcribe these two
functions in Section 5.9.

The term direct 1/O, from the ISO C standard, is known by many names: binary 1/0,
object-at-a-time I/O, record-oriented 1/O, or structure-oriented 1/0.

(We describe the formatted I/O functions, such as print f and scanf, in Section 5.11.)

Input Functions

Three functions allow us to read one character at a time.

#include <stdio.h>
int getc(FILE *fp);
int fgetc(FILE *fp);

int getchar (void) ;

All three return: next character if OK, EOF on end of file or error

The function getchar is defined to be equivalent to getc (stdin). The difference
between the first two functions is that getc can be implemented as a macro, whereas
fgetc cannot be implemented as a macro. This means three things.

1. The argument to get c should not be an expression with side effects.

2. Since fgetc is guaranteed to be a function, we can take its address. This allows
us to pass the address of fgetc as an argument to another function.

Section 5.6 Reading and Writing a Stream — 141

3. Calls to fgetc probably take longer than calls to getc, as it usually takes more
time to call a function.

These three functions return the next character as an unsigned char converted to
an int. The reason for specifying unsigned is so that the high-order bit, if set, doesn't
cause the return value to be negative. The reason for requiring an integer return value
is so that all possible character values can be returned, along with an indication that
either an error occurred or the end of file has been encountered. The constant EOF in
<stdio.h> is required to be a negative value. Its value is often 1. This representation
also means that we cannot store the return value from these three functions in a
character variable and compare this value later against the constant EOF.

Note that these functions return the same value whether an error occurs or the end
of file is reached. To distinguish between the two, we must call either ferror or feof.

#include <stdio.h>
int ferror (FILE *fp);
int feof (FILE *fp);

Both return: nonzero (true) if condition is true, 0 (false) otherwise

void clearerr (FILE *fp);

In most implementations, two flags are maintained for each stream in the FILE object:

e Anerror flag
* An end-of-file flag

Both flags are cleared by calling clearerr.
After reading from a stream, we can push back characters by calling ungetc.

#include <stdio.h>

int ungetc(int ¢, FILE *fp);

Returns: ¢ if OK, EOF on error

The characters that are pushed back are returned by subsequent reads on the stream in
reverse order of their pushing. Be aware, however, that although ISO C allows an
implementation to support any amount of pushback, an implementation is required to
provide only a single character of pushback. We should not count on more than a single
character.

The character that we push back does not have to be the same character that was
read. We are not able to push back EOF. But when we’ve reached the end of file, we can
push back a character. The next read will return that character, and the read after that
will return EOF. This works because a successful call to ungetc clears the end-of-file
indication for the stream.

Pushback is often used when we’re reading an input stream and breaking the input
into words or tokens of some form. Sometimes we need to peek at the next character to
determine how to handle the current character. It’s then easy to push back the character
that we peeked at, for the next call to getc to return. If the standard I/O library didn’t

142

Standard 1/O Library Chapter 5

provide this pushback capability, we would have to store the character in a variable of
our own, along with a flag telling us to use this character instead of calling getc the
next time we need a character.

When we push characters back with ungetc, they don’t get written back to the underlying file
or device. They are kept incore in the standard 1/O library’s buffer for the stream.

Output Functions

5.7

We'll find an output function that corresponds to each of the input functions that we’ve
already described.

#include <stdio.hs>
int putc(int ¢, FILE *fp);
int fputc(int ¢, FILE *fp);

int putchar(int ¢);

All three return: ¢ if OK, EOF on error

Like the input functions, putchar (c) is equivalent to putc (c, stdout), and putc
can be implemented as a macro, whereas fputc cannot be implemented as a macro.

Line-at-a-Time /O

Line-at-a-time input is provided by the following two functions.

#include <stdio.h>
char *fgets(char *restrict buf, int n, FILE *restrict fp);

char *gets{char *buf);

Both return: buf if OK, NULL on end of file or error

Both specify the address of the buffer to read the line into. The gets function reads
from standard input, whereas fget s reads from the specified stream.

With fgets, we have to specify the size of the buffer, n. This function reads up
through and including the next newline, but no more than n-I characters, into the
buffer. The buffer is terminated with a null byte. If the line, including the terminating
newline, is longer than n-1, only a partial line is returned, but the buffer is always null
terminated. Another call to fgets will read what follows on the line.

The gets function should never be used. The problem is that it doesn’t allow the
caller to specify the buffer size. This allows the buffer to overflow, if the line is longer
than the buffer, writing over whatever happens to follow the buffer in memory. For a
description of how this flaw was used as part of the Internet worm of 1988, see the June
1989 issue (vol. 32, no. 6) of Communications of the ACM. An additional difference with
gets is that it doesn’t store the newline in the buffer, as does fgets.

Section 5.8 Standard I/O Efficiency = 143

5.8

This difference in newline handling between the two functions goes way back in the evolution
of the UNIX System. Even the Version.7 manual (1979) states “gets deletes a newline, fgets
keeps it, all in the name of backward compatibility.”

Even though ISO C requires an implementation to provide gets, use fgets instead.
Line-at-a-time output is provided by fputs and puts.

#include <stdio.h»>
int fputs{const char *restrict str, FILE *restrict fr)i

int puts(const char *str);

Both return: non-negative value if OK, EOF on error

The function fputs writes the null-terminated string to the specified stream. The null
byte at the end is not written. Note that this need not be line-at-a-time output, since the
string need not contain a newline as the last non-null character. Usually, this is the
case—the last non-null character is a newline—but it’s not required.

The puts function writes the null-terminated string to the standard output, without
writing the null byte. But puts then writes a newline chardcter to the standard output.

The puts function is not unsafe, like its counterpart gets. Nevertheless, we'll
avoid using it, to prevent having to remember whether it appends a newline. If we
always use fgets and fputs, we know that we always have to deal with the newline
character at the end of each line.

Standard /O Efficiency

Using the functions from the previous section, we can get an idea of the efficiency of the
standard 1/O system. The program in Figure 5.4 is like the one in Figure 3.4: it simply
copies standard input to standard output, using getc and putc. These two routines
can be implemented as macros.

#include "apue.h"

int
main (void)
{
int c;
while ((c = getc(stdin)) != EOF)

if (putc(c, stdout) == EOF)
err_sys ("output error");

if (ferror(stdin))
err_sys("input error");

exit (0);

Figure 5.4 Copy standard input to standard output using getc and putc

144 Standard 1/O Library Chapter 5

We can make another version of this program that uses fgetc and fputc, which
should be functions, not macros. (We don’t show this trivial change to the source code.)
Finally, we have a version that reads and writes lines, shown in Figure 5.5.

#include "apue.h"

int
main (void)

{

char buf [MAXLINE] ;
while (fgets(buf, MAXLINE, stdin) != NULL)
if (fputs(buf, stdout) == EOF)

err sys("output error");

if (ferror(stdin))
errvsys("input error") ;

exit (0);

Figure 5.5 Copy standard input to standard output using fgets and fputs

Note that we do not close the standard 1/0O streams explicitly in Figure 5.4 or Figure 5.5.
Instead, we know that the exit function will flush any unwritten data and then close
all open streams. (We'll discuss this in Section 8.5.) It is interesting to compare the
timing of these three programs with the timing data from Figure 3.5. We show this data
when operating on the same file (98.5 MB with 3 million lines) in Figure 5.6.

. User CPU | System CPU | Clock time Bytes of
Function
(seconds) (seconds) (seconds) | program text
best time from Figure 3.5 0.01 0.18 6.67
fgets, fputs 2.59 0.19 7.15 139
getc, putc 10.84 0.27 12.07 120
fgetc, fputc : 10.44 0.27 11.42 120
single byte time from Figure 3.5 | 124.89 161.65 288.64

Figure 5.6 Timing results using standard I/O routines

For each of the three standard 1/0O versions, the user CPU time is larger than the best
read version from Figure 3.5, because the character-at-a-time standard 1/O versions
have a loop that is executed 100 million times, and the loop in the line-at-a-time version
is executed 3,144,984 times. In the read version, its loop is executed only 12,611 times
(for a buffer size of 8,192). This difference in clock times is from the difference in user
times and the difference in the times spent waiting for I/O to complete, as the system
times are comparable.

The system CPU time is about the same as before, because roughly the same
number of kernel requests are being made. Note that an advantage of using the
standard I/O routines is that we don’t have to worry about buffering or choosing the

Section 5.9 Binary 1/0 145

5.9

optimal I/O size. We do have to determine the maximum line size for the version that
uses fgets, but that's easier than trying to choose the optimal I/O size.

The final column in Figure 5.6 is the number of bytes of text space—the machine
instructions generated by the C compiler—for each of the main functions. We can see
that the version using getc and putc takes the same amount of space as the one using
the fgetc and fputc functions. Usually, getc and putc are implemented as macros,
but in the GNU C library implementation, the macro simply expands to a function call.

The version using line-at-a-time I/O is almost twice as fast as the version using
character-at-a-time 1/0. If the fgets and fputs functions are implemented using
getc and putc (see Section 7.7 of Kernighan and Ritchie [1988], for example), then we
would expect the timing to be similar to the getc version. Actually, we might expect
the line-at-a-time version to take longer, since we would be adding the overhead of 200
million extra function calls to the existing 6 million ones. What is happening with this
example is that the line-at-a-time functions are implemented using memc cpy(3). Often,
the memccpy function is implemented in assembler instead of C, for efficiency.

The last point of interest with these timing numbers is that the fgetc version is so
much faster than the BUFFSIZE=1 version from Figure 3.5. Both involve the same
number of function calls—about 200 million—yet the fgetc version is almost 12 times
faster in user CPU time and slightly more than 25 times faster in clock time. The
difference is that the version using read executes 200 million function calls, which in
turn execute 200 million system calls. With the fgetc version, we still execute 200
million function calls, but this ends up being only 25,222 system calls. System calls are
usually much more expensive than ordinary function calls.

As a disclaimer, you should be aware that these timing results are valid only on the
single system they were run on. The results depend on many implementation features
that aren’t the same on every UNIX system. Nevertheless, having a set of numbers such
as these, and explaining why the various versions differ, helps us understand the
system better. From this section and Section 3.9, we've learned that the standard 1/0O
library is not much slower than calling the read and write functions directly. The
approximate cost that we’ve seen is about 0.11 seconds of CPU time to copy a megabyte
of data using getc and putc. For most nontrivial applications, the largest amount of
the user CPU time is taken by the application, not by the standard I/O routines.

Binary /O

The functions from Section 5.6 operated with one character at a time, and the functions
from Section 5.7 operated with one line at a time. If we're doing binary 1/0, we often
would like to read or write an entire structure at a time. To do this using getc or putc,
we have to loop through the entire structure, one byte at a time, reading or writing each
byte. We can’t use the line-at-a-time functions, since fputs stops writing when it hits a
null byte, and there might be null bytes within the structure. Similarly, fgets won't
work right on input if any of the data bytes are nulls or newlines. Therefore, the
following two functions are provided for binary I/O.

146

Standard 1/O Library Chapter 5

#include <stdio.h>

size_t fread(void *restrict ptr, size_t size, size_t nobj,
FILE *restrict fp);

size t fwrite(const void *restrict ptr, size_t size, size_t nobyj,
FILE *restrict fp);

Both return: number of objects read or written

These functions have two common uses:

1. Read or write a binary array. For example, to write elements 2 through 5 of a
floating-point array, we could write

float data[10];

if (fwrite(&data(2], sizeof (float), 4, fp) != 4)
err _sys("fwrite error");

Here, we specify size as the size of each element of the array and nobj as the
number of elements.

2. Read or write a structure. For example, we could write

struct {

short count;

long total;

char name [NAMESIZE] ;
} item;

if (fwrite(&item, sizeof (item), 1, fp) != 1)
err_sys("fwrite error");

Here, we specify size as the size of structure and nobj as one (the number of
objects to write).

The obvious generalization of these two cases is to read or write an array of structures.
To do this, size would be the sizeof the structure, and nobj would be the number of
elements in the array.

Both fread and fwrite return the number of objects read or written. For the read
case, this number can be less than nobj if an error occurs or if the end of file is
encountered. In this case ferror or feof must be called. For the write case, if the
return value is less than the requested nobj, an error has occurred.

A fundamental problem with binary I/O is that it can be used to read only data that
has been written on the same system. This was OK many years ago, when all the UNIX
systems were PDP-11s, but the norm today is to have heterogeneous systems connected
together with networks. It is common to want to write data on one system and process
it on another. These two functions won’t work, for two reasons.

Section 5.10

Positioning a Stream 147

1. The offset of a member within a structure can differ between compilers and

systems, because of different alignment requirements. Indeed, some compilers
have an option allowing structures to be packed tightly, to save space with a
possible runtime performance penalty, or aligned accurately, to optimize
runtime access of each member. This means that even on a single system, the
binary layout of a structure can differ, depending on compiler options.

The binary formats used to store multibyte integers and floating-point values
differ among machine architectures.

We'll touch on some of these issues when we discuss sockets in Chapter 16. The real
solution for exchanging binary data among different systems is to use a higher-level
protocol. Refer to Section 8.2 of Rago [1993] or Section 5.18 of Stevens, Fenner, & Rudoff
[2004] for a description of some techniques various network protocols use to exchange
binary data. ;

We'll return to the fread function in Section 8.14 when we’ll use it to read a binary

structure, the UNIX process accounting records.

5.10 Positioning a Stream

There are three ways to position a standard 1/O stream:

1. The two functions ftell and fseek. They have been around since Version 7,

but they assume that a file’s position can be stored in a long integer.

The two functions ftello and fseeko. They were introduced in the Single
UNIX Specification to allow for file offsets that might not fit in a long integer.
They replace the long integer with the of £_t data type.

The two functions fgetpos and fsetpos. They were introduced by ISO C.
They use an abstract data type, fpos_t, that records a file’s position. This data
type can be made as big as necessary to record a file’s position.

Portable applications that need to move to non-UNIX systems should use fgetpos and
fsetpos.

#include <stdio.h>
long ftell (FILE *fp);

Returns: current file position indicator if OK, —1L on error
int fseek (FILE *fp, long offset, int whence) ;

Returns: 0 if OK, nonzero on error

void rewind(FILE *fp);

148 Standard I/O Library Chapter 5

For a binary file, a file’s position indicator is measured in bytes from the beginning of
the file. The value returned by ftel1l for a binary file is this byte position. To position
a binary file using fseek, we must specify a byte offset and how that offset is
interpreted. The values for whence are the same as for the lseek function from
Section 3.6: SEEK_SET means from the beginning of the file, SEEK_CUR means from the
current file position, and SEEK_END means from the end of file. ISO C doesn’t require
an implementation to support the SEEK_END specification for a binary file, as some

“systems require a binary file to be padded at the end with zeros to make the file size a
multiple of some magic number. Under the UNIX System, however, SEEK_END is
supported for binary files.

For text files, the file’s current position may not be measurable as a simple byte
offset. Again, this is mainly under non-UNIX systems that might store text files in a
different format. To position a text file, whence has to be SEEK_SET, and only two
values for offset are allowed: 0—meaning rewind the file to its beginning—or a value
that was returned by ftell for that file. A stream can also be set to the beginning of
the file with the rewind function.

The ftello function is the same as f tell, and the £seeko function is the same as
fseek, except that the type of the offset is of £_t instead of long.

#include <stdio.h>
off t ftello(FILE *fp);

Returns: current file position indicator if OK, (of f_t)-1onerror
int fseeko(FILE *fp, off_t offset, int whence) ;

Returns: 0 if OK, nonzero on error

Recall the discussion of the of £_t data type in Section 3.6. Implementations can define
the of £_t type to be larger than 32 bits.

As we mentioned, the fgetpos and f setpos functions were introduced by the
ISO C standard.

#include <stdio.h»>
int fgetpos (FILE *restrict fr. fpos_t *restrict pos) ;

int fsetpos(FILE *fp, const fpos_t *pos);

Both return: 0 if OK, nonzero on error

The fgetpos function stores the current value of the file’s position indicator in the
object pointed to by pos. This value can be used in a later call to £ setpos to reposition
the stream to that location.

Section 5.11 Formatted 1/0 149

5.11 Formatted 1/O

Formatted Output

Formatted output is handled by the four printf functions.

#include <stdio.h>

int printf (const char *restrict format, ...);

int fprintf (FILE *restrict fp, const char *restrict format, ...);
Both return: number of characters output if OK, negative value if output error

“int sprintf{char *restrict buf, const char *restrict format, ...);

int snprintf (char *restrict buf, size_t n,
const char *restrict format, ...);

Both return: number of characters stored in array if OK, negative value if encoding error

The printf function writes to the standard output, fprintf writes to the specified
stream, and sprintf places the formatted characters in the array buf. The sprintt
function automatically appends a null byte at the end of the array, but this null byte is
not included in the return value.

Note that it's possible for sprintf to overflow the buffer pointed to by buf. It's the
caller’s responsibility to ensure that the buffer is large enough. Because this can lead to
buffer-overflow problems, snprintf was introduced. With it, the size of the buffer is
an explicit parameter; any characters that would have been written past the end of the
buffer are discarded instead. The snprintf function returns the number of characters
that would have been written to the buffer had it been big enough. As with sprintf,
the return value doesn’t include the terminating null byte. If snprintf returns a
positive value less than the buffer size n, then the output was not truncated. If an
encoding error occurs, snprint f returns a negative value.

The format specification controls how the remainder of the arguments will be
encoded and ultimately displayed. Each argument is encoded according to a
conversion specification that starts with a percent sign (%). Except for the conversion
specifications, other characters in the format are copied unmodified. A conversion
spe. ication has four optional components, shown in square brackets below:

% [flags] [f1dwidth] [precision] [lenmodifier] convtype

The flags are summarized in Figure 5.7.

The £1ldwidth component specifies a minimum field width for the conversion. If
the conversion results in fewer characters, it is padded with spaces. The field width is a
non-negative decimal integer or an asterisk.

The precision component specifies the minimum number of digits to appear for
integer conversions, the minimum number of digits to appear to the right of the decimal
point for floating-point conversions, or the maximum number of bytes for string
conversions. The precision is a period () followed by a optional non-negative decimal
integer or an asterisk.

150 Standard I/0 Library

Description

(space) | prefix by a space if no sign is generated

left-justify the output in the field
always display sign of a signed conversion

convert using alternate form (include Ox prefix for hex format, for example)
prefix with leading zeros instead of padding with spaces

Both the field width and precision can be an asterisk. In this case, an integer
argument specifies the value to be used. The argument appears directly before the

Figure 5.7 The flags component of a conversion specification

argument to converted.

The lenmodifier component specifies the size of the argument. Possible values

are summarized in Figure 5.8.

The convtype component is not optional. It controls how the argument is

r

Length modifier Description

hh signed or unsigned char

h signed or unsigned short

1 signed or unsigned long or wide character
11 signed or unsigned long long

j intmax_t oruintmax_t

z size t

t ptrdiff t

L long double

Figure 5.8 The length modifier component of a conversion specification

interpreted. The various conversion types are summarized in Figure 5.9.

Conversion

Description

type

1

> 0w e

W e 3D 0BOQOMXES O Q

signed decimal

unsigned octal

unsigned decimal

unsigned hexadecimal

double floating-point number

double floating-point number in exponential format

interpreted as f, F, e, or E, depending on value converted

double floating-point number in hexadecimal exponential format
character (with 1 length modifier, wide character)

string (with 1 length modifier, wide character string)

pointer to a void

pointer to a signed integer into which is written the number of characters written so far
a % character

wide character (an XSI extension, equivalent to 1c)

wide character string (an XSI extension, equivalent to 1s)

Figure 5.9 The conversion type component of a conversion specification

Chapter 5

Section 5.11 Formatted 1/0 151

The following four variants of the printf family are similar to the previous four,
but the variable argument list (. . .) is replaced with arg.

#include <stdarg.h>
#include <stdio.h>

int vprintf (const char *restrict format, va_list arg) ;

int vfprintf (FILE *restrict fp, const char *restrict format,
va_list arg);

Both return: number of characters output if OK, negative value if output error

int vsprintf (char *restrict buf, const char *restrict format,
va_list arg);

int venprintf (char *restrict buf, size_t n,
const char *restrict format, va_list arg);

Both return: number of characters stored in array if OK, negative value if encoding error

We use the venprint £ function in the error routines in Appendix B.

Refer to Section 7.3 of Kernighan and Ritchie [1988] for additional details on
handling variable-length argument lists with ISO Standard C. Be aware that the
variable-length argument list routines provided with ISO C—the <stdarg.h> header
and its associated routines—differ from the <varargs.h> routines that were provided
with older UNIX systems.

Formatted Input

Formatted input is handled by the three scanf functions.

#include <stdio.h>
int scanf (const char *restrict format, . L)
int fscanf (FILE *restrict fp, const char *restrict format, ...);

int sscanf (const char *restrict buf, const char *restrict format,

)

All three return: number of input items assigned,
EOF if input error or end of file before any conversion

The scanf family is used to parse an input string and convert character sequences into
variables of specified types. The arguments following the format contain the addresses
of the variables to initialize with the results of the conversions.

152 Standard I/O Library Chapter 5

The format specification controls how the arguments are converted for assignment.
The percent sign (%) indicates the start of a conversion specification. Except for the
conversion specifications and white space, other characters in the format have to match
the input. If a character doesn’t match, processing stops, leaving the remainder of the
input unread.

There are three optional components to a conversion specification, shown in square
brackets below:

%[*] [fldwidth] [lenmodifier] convtype

The optional leading asterisk is used to suppress conversion. Input is converted as
specified by the rest of the conversion specification, but the result is not stored in an
argument.

The £1dwidth component specifies the maximum field width in characters. The
lenmodifier component specifies the size of the argument to be initialized with the
result of the conversion. The same length modifiers supported by the print £ family of
functions are supported by the scanf family of functions (see Figure 5.8 for a list of the
length modifiers).

The convtype field is similar to the conversion type field used by the printf
family, but there are some differences. One difference is that results that are stored in
unsigned types can optionally be signed on input. For example, -1 will scan as
4294967295 into an unsigned integer. Figure 5.10 summarizes the conversion types
supported by the scanf family of functions.

Conversion Description
type

signed decimal, base 10

signed decimal, base determined by format of input
unsigned octal (input optionally signed)

unsigned decimal, base 10 (input optionally signed)
unsigned hexadecimal (input optionally signed)
+A,e,E,f,F,g,G | floating-point number

character (with 1 length modifier, wide character)

string (with 1 length modifier, wide character string)
matches a sequence of listed characters, ending with]
matches all characters except the ones listed, ending with]
pointer to a void

pointer to a signed integer into which is written the number of characters read so far
a % character

wide character (an XSI extension, equivalent to 1c)

wide character string (an XSI extension, equivalent to 1s)

>

N OQ®B30V ~—~00® X c 0+ Q

Figure 510 The conversion type component of a conversion specification

As with the printf family, the scanf family also supports functions that use variable
argument lists as specified by <stdarg.h>.

Section 5.12 Implementation Details 153

5.12

#include <stdarg.h>
#include <stdio.h>

int vscanf (const char *restrict format, va_list arg);

int vfscanf (FILE *restrict fp, const char *restrict formut,
va_list arg);

int vsscanf (const char *restrict buf, const char *restrict format,
va_list arg);

All three return: number of input items assigned,
EOF if input error or end of file before any conversion

Refer to your UNIX system manual for additional details on the scanf family of
functions.

Implementation Details

As we've mentioned, under the UNIX System, the standard 1/0 library ends up calling
the I/O routines that we described in Chapter 3. Each standard 1/O stream has an
associated file descriptor, and we can obtain the descriptor for a stream by calling
fileno.

Note that £ileno is not part of the ISO C standard, but an extension supported by POSIX.1.

#include <stdio.h>

int fileno(FILE *fp);

Returns: the file descriptor associated with the stream

We need this function if we want to call the dup or £cnt1 functions, for example.

To look at the implementation of the standard 1/0 library on your system, start
with the header <stdio.h>. This will show how the FILE object is defined, the
definitions of the per-stream flags, and any standard 1/0 routines, such as getc, that
are defined as macros. Section 8.5 of Kernighan and Ritchie [1988] has a sample
implementation that shows the flavor of many implementations on UNIX systems.
Chapter 12 of Plauger [1992] provides the complete source code for an implementation
of the standard 1/O library. The implementation of the GNU standard 1/O library is
also publicly available.

Example

The program in Figure 5.11 prints the buffering for the three standard streams and for a
stream that is associated with a regular file.

154

Standard 1/O Library Chapter 5

#include "apue.h"
void pr_stdio(const char *, FILE *);

int
main (void)

{

FILE *fp;

fputs("enter any character\n", stdout);
if (getchar() == EOF)
err_sys("getchar error");
fputs("one line to standard error\n", stderr);

pr_stdio("stdin", stdin);
pr_stdio("stdout", stdout);
pr_stdio("stderr", stderr)

’

if ((fp = fopen("/etc/motd", "r")) == NULL)
err_sys{("fopen error");
if (getc(fp) == EOF)

err_sys("getc error");
pr_stdio("/etc/motd", fp);
exit (0);

}

void
pr_stdio(const char *name, FILE *fp)

{

printf ("stream = %s, ", name);
/*
* The following is nonportable.
*/

if (fp->_IO file_flags & _IO UNBUFFERED)
printf ("unbuffered") ;
else if (fp->_ IO file flags & _IO_LINE_BUF)
printf ("line buffered");
else /* if neither of above */
printf ("fully buffered");
printf (", buffer size = %d\n", fp->_I0_buf end - fp->_IO buf base);

Figure 5.11 Print buffering for various standard 1/0 streams

Note that we perform I/O on each stream before printing its buffering status, since the
first 1/O operation usually causes the buffers to be allocated for a stream. The structure
members _10_file_flags, IO buf base, and _I0_buf_end and the constants
_IO_UNBUFFERED and _IO_LINE BUFFERED are defined by the GNU standard I/0
library used on Linux. Be aware that other UNIX systems may have different
implementations of the standard 1/0O library.

Section 5.13 Temporary Files 155

5.13

If we run the program in Figure 5.11 twice, once with the three standard streams
connected to the terminal and once with the three standard streams redirected to files,
we get the following result:

$./a.out stdin, stdout, and stderr connected to terminal
enter any character
we type a newline
one line to standard error
stream = stdin, line buffered, buffer size = 1024
stream = stdout, line buffered, buffer size = 1024
stream = stderr, unbuffered, buffer size =1
stream = /etc/motd, fully buffered, buffer size = 4096
$./a.out < /etc/termcap > std.out 2> std.err
run it again with all three streams redirected
$ cat std.err
one line to standard error
$ cat std.out
enter any character
stream = stdin, fully buffered, buffer size = 4096
stream = stdout, fully buffered, buffer size = 4096
stream = stderr, unbuffered, buffer size = 1
stream = /etc/motd, fully buffered, buffer size = 4096

We can see that the default for this system is to have standard input and standard
output line buffered when they're connected to a terminal. The line buffer is 1,024
bytes. Note that this doesn’t restrict us to 1,024-byte input and output lines; that’s just
the size of the buffer. Writing a 2,048-byte line to standard output will require two
write system calls. When we redirect these two streams to regular files, they become
fully buffered, with buffer sizes equal to the preferred 1/0 size—the st_blksize
value from the stat structure—for the file system. We also see that the standard error
is always unbuffered, as it should be, and that a regular file defaults to fully buffered. O

Temporary Files

The ISO C standard defines two functions that are provided by the standard 1/O library
to assist in creating temporary files. '

ginclude <stdio.h>]
char *tmpnam(char *ptr);
Returns: pointer to unique pathname

FILE *tmpfile(void);

| Returns: file pointer if OK, NULL on error

The tmpnam function generates a string that is a valid pathname and that is not the
same name as an existing file. This function generates a different pathname each time it
is called, up to TMP_MAX times. TMP_MAX is defined in <stdio.h>.

156 Standard 1/0O Library Chapter 5

Although ISO C defines TMP MAX, the C standard requires only that its value be at least 25.
The Single UNIX Specification, however, requires that XSI-conforming systems support a value
of at least 10,000. Although this minimum value allows an implementation to use four digits
(0000-9999), most implementations on UNIX systems use lowercase or uppercase characters.

If ptr is NULL, the generated pathname is stored in a static area, and a pointer to this
area is returned as the value of the function. Subsequent calls to tmpnam can overwrite
this static area. (This means that if we call this function more than once and we want to
save the pathname, we have to save a copy of the pathname, not a copy of the pointer.)
If ptr is not NULL, it is assumed that it points to an array of at least L tmpnam
characters. (The constant L_tmpnam is defined in <stdio.hs>.) The generated
pathname is stored in this array, and ptr is also returned as the value of the function.

The tmpfile function creates a temporary binary file (type wb+) that is
automatically removed when it is closed or on program termination. Under the UNIX
System, it makes no difference that this file is a binary file.

Example

The program in Figure 5.12 demonstrates these two functions.

#include "apue.h"
int
main (void)

{

char name [L_tmpnam] , line [MAXLINE] ;

FILE *fp;
printf("%s\n", tmpnam(NULL)) ; /* first temp name */
tmpnam (name) ; /* second temp name */
printf ("%s\n", name);
if ((fp = tmpfile()) == NULL) /* create temp file */
err_sys("tmpfile error");
fputs("one line of output\n", fp); /* write to temp file */
rewind (fp) ; /* then read it back */
if (fgets(line, sizeof (line), fp) == NULL)
err_sys("fgets error");
fputs(line, stdout); /* print the line we wrote */
exit (0) ;

Figure 512 Demonstrate tmpnam and tmpfile functions

If we execute the program in Figure 5.12, we get

$./a.out
/tmp/fileClIcwe
/tmp/filemSkHSe
one line of output

Section 5.13 Temporary Files 157

The standard technique often used by the tmpfile function is to create a unique
pathname by calling tmpnam, then create the file, and immediately unlink it. Recall
from Section 4.15 that unlinking a file does not delete its contents until the file is closed.
This way, when the file is closed, either explicitly or on program termination, the
contents of the file are deleted.

The Single UNIX Specification defines two additional functions as XSI extensions
for dealing with temporary files. The first of these is the tempnam function.

#include <stdio.h>

char *tempnam(const char *directory, const char *prefix) ;

Returns: pointer to unique pathname

The tempnam function is a variation of tmpnam that allows the caller to specify both the
directory and a prefix for the generated pathname. There are four possible choices for
the directory, and the first one that is true is used.

1. If the environment variable TMPDIR is defined, it is used as the directory. (We
describe environment variables in Section 7.9.)

2. [If directory is not NULL, it is used as the directory.
3. Thestring P_tmpdirin <stdio.h>is used as the directory.

4. A local directory, usually /tmp, is used as the directory.
If the prefix argument is not NULL, it should be a string of up to five bytes to be used as
the first characters of the filename.

This function calls the malloc function to allocate dynamic storage for the

constructed pathname. We can free this storage when we’re done with the pathname.
(We describe the malloc and free functions in Section 7.8.)

Example

The program in Figure 5.13 shows the use of tempnam.

#include "apue.h"

int
main (int argc, char *argv(])
{

if (argc != 3)

err_quit ("usage: a.out <directory> <prefix>");
printf ("$s\n", tempnam(argv (1] [0] != " ' ? argv(l] : NULL,
argvi2] (0] =" " ? argv (2] : NULL));

exit (0);

}

Figure 5.13 Demonstrate tempnam function

158

Standard 1/0 Library Chapter 5

Note that if either command-line argument—the directory or the prefix—begins with a
blank, we pass a null pointer to the function. We can now show the various ways to use
it:

$./a.out /home/sar TEMP specify both directory and prefix
/home/sar/TEMPsf00zi

$./a.out " " PFX use default directory: P_tmpdir
/tmp/PFXfBw7Gi

$ TMPDIR=/var/tmp ./a.out /usr/tmp " " useenvironment variable; no prefix
/var/tmp/£file8fVYNi environment variable overrides directory
$ TMPDIR=/no/such/dir ./a.out /home/sar/tmp QQQ
/home/sar/tmp/QQQ98s8U1i invalid environment directory is ignored

As the four steps that we listed earlier for specifying the directory name are tried in
order, this function also checks whether the corresponding directory name makes sense.
If the directory doesn’t exist (the /no/such/dir example), that case is skipped, and
the next choice for the directory name is tried. From this example, we can see that for
this implementation, the P_tmpdir directory is /tmp. The technique that we used to
set the environment variable, specifying TMPDIR= before the program name, is used by
the Bourne shell, the Korn shell, and bash. o

The second function that XSI defines is mkstemp. It is similar to tmpfile, but
returns an open file descriptor for the temporary file instead of a file pointer.

#include <stdlib.h»>
int mkstemp (char *template) ;

Returns: file descriptor if OK, —1 on error

The returned file descriptor is open for reading and writing. The name of the
temporary file is selected using the template string. This string is a pathname whose last
six characters are set to XXXXxX. The function replaces these with different characters to
create a unique pathname. If mkstemp returns success, it modifies the template string to
reflect the name of the temporary file.

Unlike tmpfile, the temporary file created by mkstemp is not removed
automatically for us. If we want to remove it from the file system namespace, we need
to unlink it ourselves.

There is a drawback to using tmpnam and tempnam: a window exists between the
time that the unique pathname is returned and the time that an application creates a file
with that name. During this timing window, another process can create a file of the
same name. The tempfile and mkstemp functions should be used instead, as they
don’t suffer from this problem.

The mktemp function is similar to mkstemp, except that it creates a name suitable only for use
as a temporary file. The mktemp function doesn't create a file, so it suffers from the same
drawback as tmpnam and tempnam. The mktemp function is marked as a legacy interface in
the Single UNIX Specification. Legacy interfaces might be withdrawn in future versions of the
Single UNIX Specification, and so should be avoided.

Chapter 5 Exercises 159

5.14

5.15

Alternatives to Standard /O

The standard 1/0 library is not perfect. Korn and Vo [1991] list numerous defects: some
in the basic design, but most in the various implementations.

One inefficiency inherent in the standard 1/O library is the amount of data copying
that takes place. When we use the line-at-a-time functions, fgets and fputs, the data
is usually copied twice: once between the kernel and the standard 1/0 buffer (when the
corresponding read or write is issued) and again between the standard 1/O buffer
and our line buffer. The Fast I/O library [£10(3) in AT&T 1990a] gets around this by
having the function that reads a line return a pointer to the line instead of copying the
line into another buffer. Hume [1988] reports a threefold increase in the speed of a
version of the grep(1) utility, simply by making this change.

Korn and Vo [1991] describe another replacement for the standard 1/0 library: sfio.
This package is similar in speed to the fio library and normally faster than the standard
1/0 library. The sfio package also provides some new features that aren’t in the others:
I/O streams generalized to represent both files and regions of memory, processing
modules that can be written and stacked on an I/O stream to change the operation of a
stream, and better exception handling.

Krieger, Stumm, and Unrau [1992] describe another alternative that uses mapped
files—the mmap function that we describe in Section 14.9. This new package is called
ASI, the Alloc Stream Interface. The programming interface resembles the UNIX
System memory allocation functions (malloc, realloc, and free, described in
Section 7.8). As with the sfio package, ASI attempts to minimize the amount of data
copying by using pointers.

Several implementations of the standard 1/0 library are available in C libraries that
were designed for systems with small memory footprints, such as embedded systems.
These implementations emphasize modest memory requirements over portability,
speed, or functionality. Two such implementations are the uClibc C library (see
http://www.uclibc.org for more information) and the newlibc C library
(http://sources.redhat. com/newlib).

Summary

The standard 1/O library is used by most UNIX applications. We have looked at all the
functions provided by this library, as well as at some implementation details and
efficiency considerations. Be aware of the buffering that takes place with this library, as
this is the area that generates the most problems and confusion.

Exercises

51 Implement setbuf using setvbuf.

52 Type in the program that copies a file using line-at-a-time I/O (fgets and fputs) from
Section 5.8, but use a MAXLINE of 4. What happens if you copy lines that exceed this
length? Explain what is happening.

160 Standard I/O Library Chapter 5

5.3 What does a return value of 0 from printf mean?

54 The following code works correctly on some machines, but not on others. What could be

the problem?
#include <stdio.h>
int
main (void)
{
char c;
while ((c = getchar()) != EOF)

putchar(c) ;
}
5.5 Why does tempnam restrict the prefix to five characters?
5.6 How would you use the fsync function (Section 3.13) with a standard I/O stream?

5.7 In the programs in Figures 1.7 and 1.10, the prompt that is printed does not contain a
newline, and we don’t call ££1ush. What causes the prompt to be output?

6.1

6.2

System Data Files and
Information

Introduction

A UNIX system requires numerous data files for normal operation: the password file
/etc/passwd and the group file /etc/group are two files that are frequently used by
various programs. For example, the password file is used every time a user logs in to a
UNIX system and every time someone executesan 1s -1 command.

Historically, these data files have been ASCII text files and were read with the
standard 1/O library. But for larger systems, a sequential scan through the password
file becomes time consuming. We want to be able to store these data files in a format
other than ASCII text, but still provide an interface for an application program that
works with any file format. The portable interfaces to these data files are the subject of
this chapter. We also cover the system identification functions and the time and date
functions.

Password File

The UNIX System’s password file, called the user database by POSIX.1, contains the
fields shown in Figure 6.1. These fields are contained in a passwd structure that is
defined in <pwd.h>.

Note that POSIX.1 specifies only five of the ten fields in the passwd structure. Most platforms
support at least seven of the fields. The BSD-derived platforms support all ten.

161

162

System Data Files and Information

Chapter 6

. struct passwd FreeBSD Linux MacOS X Solaris

Description member POSIXT1 501 24220 103 9
user name char *pw_name
encrypted password char *pw_passwd
numerical user ID uid_t pw_uid . o . .
numerical group ID gid_t pw_gid . o . .
comment field char *pw_gecos
initial working directory char *pw_dir . . . o .
initial shell (user program) char *pw_shell
user access class char *pw_class . o
next time to change password [time_t pw_change . e
account expiration time time_t pw_expire . .

Figure 6.1 Fieldsin /etc/passwd file

Historically, the password file has been stored in /etc/passwd and has been an
ASCII file. Each line contains the fields described in Figure 6.1, separated by colons.

For example, four lines from the /etc/passwd file on Linux could be

root:x:0:0:root:/root: /bin/bash
squid:x:23:23::/var/spool/squid:/dev/null
nobody:x:65534:65534 : Nobody: /home: /bin/sh
8ar:x:205:105:Stephen Rago:/home/sar:/bin/bash

Note the following points about these entries.

* There is usually an entry with the user name root. This entry has a user ID of 0

(the superuser).

* The encrypted password field contains a single character as a placeholder where

older versions of the UNIX System used to store the encrypted password.
Because it is a security hole to store the encrypted password in a file that is
readable by everyone, encrypted passwords are now kept elsewhere. We'll
cover this issue in more detail in the next section when we discuss passwords.

Some fields in a password file entry can be empty. If the encrypted password
field is empty, it usually means that the user does not have a password. (This is
not recommended.) The entry for squid has one blank field: the comment field.
An empty comment field has no effect.

The shell field contains the name of the executable program to be used as the
login shell for the user. The default value for an empty shell field is usually
/bin/sh. Note, however, that the entry for squid has /dev/null as the login
shell. Obviously, this is a device and cannot be executed, so its use here is to
prevent anyone from logging in to our system as user squid.

Many services have separate user IDs for the daemon processes (Chapter 13) that help
implement the service. The squid entry is for the processes implementing the squid proxy
cache service.

Section 6.2 Password File 163

e There are several alternatives to using /dev/null to prevent a particular user
from logging in to a system. It is common to see /bin/false used as the login
shell. It simply exits with an unsuccessful (nonzero) status; the shell evaluates
the exit status as false. It is also common to see /bin/true used to disable an
account. All it does is exit with a successful (zero) status. Some systems provide
the nologin command. It prints a customizable error message and exits with a
nonzero exit status.

¢ The nobody user name can be used to allow people to log in to a system, but
with a user ID (65534) and group ID (65534) that provide no privileges. The
only files that this user ID and group ID can access are those that are readable or
writable by the world. (This assumes that there are no files specifically owned
by user ID 65534 or group ID 65534, which should be the case.)

e Some systems that provide the finger(l) command support additional
information in the comment field. Each of these fields is separated by a comma:
the user’s name, office location, office phone number, and home phone number.
Additionally, an ampersand in the comment field is replaced with the login
name (capitalized) by some utilities. For example, we could have

sar:x:205:105:Steve Rago, SF 5-121, 555-1111, 555-2222: /home/sar: /bin/sh
Then we could use finger to print information about Steve Rago.

$ finger -p sar

Login: sar Name: Steve Rago
Directory: /home/sar Shell: /bin/sh

Office: SF 5-121, 555-1111 Home Phone: 555-2222
On since Mon Jan 19 03:57 (EST) on ttyv0 (messages off)
No Mail.

Even if your system doesn’t support the finger command, these fields can still
go into the comment field, since that field is simply a comment and not
interpreted by system utilities.

Some systems provide the vipw command to allow administrators to edit the
password file. The vipw command serializes changes to the password file and makes
sure that any additional files are consistent with the changes made. It is also common
for systems to provide similar functionality through graphical user interfaces.

POSIX.1 defines only two functions to fetch entries from the password file. These
functions allow us to look up an entry given a user’s login name or numerical user ID

#include <pwd.h>
struct passwd *getpwuid(uid_t wid);

struct passwd *getpwnam(const char *name)

Both return: pointer if OK, NULL on error

The getpwuid function is used by the 1s(1) program to map the numerical user ID
contained in an i-node into a user’s login name. The getpwnam function is used by the
1ogin(1) program when we enter our login name.

164 System Data Files and Information ' Chapter 6

Both functions return a pointer to a passwd structure that the functions fill in. This
structure is usually a static variable within the function, so its contents are
overwritten each time we call either of these functions.

These two POSIX.1 functions are fine if we want to look up either a login name or a
user ID, but some programs need to go through the entire password file. The following
three functions can be used for this.

#include <pwd.h>
struct passwd *getpwent (void) ;
Returns: pointer if OK, NULL on error or end of file

void setpwent (void) ;

void endpwent (void) ;

These three functions are not part of the base POSIX.1 standard. They are defined as XSI
extensions in the Single UNIX Specification. As such, all UNIX systems are expected to
provide them.

We call getpwent to return the next entry in the password file. As with the two
POSIX.1 functions, getpwent returns a pointer to a structure that it has filled in. This
structure is normally overwritten each time we call this function. If this is the first call
to this function, it opens whatever files it uses. There is no order implied when we use
this function; the entries can be in any order, because some systems use a hashed
version of the file /etc/passwd.

The function setpwent rewinds whatever files it uses, and endpwent closes these
files. When using getpwent, we must always be sure to close these files by calling
endpwent when we're through. Although getpwent is smart enough to know when it
has to open its files (the first time we call it), it never knows when we’re through.

Example

Figure 6.2 shows an implementation of the function getpwnam.

#include <pwd.h>
#include <stddef.h>
#include <string.h>

struct passwd *
getpwnam{const char *name)

{

struct passwd@ ‘*ptr;

setpwent () ;
while ((ptr =-getpwent()) != NULL)
if (strcmp(name, ptr->pw_name) == 0)
break; /* found a match */
endpwent () ;
return(ptr) ; /* ptr is NULL if no match found */

Figure 6.2 The getpwnam function

Section 6.3 Shadow Passwords 165

The call to setpwent at the beginning is self-defense: we ensure that the files are
rewound, in case the caller has already opened them by calling getpwent. The call to
endpwent when we're done is because neither get pwnam nor getpwuid should leave
any of the files open. O

Shadow Passwords

The encrypted password is a copy of the user’s password that has been put through a
one-way encryption algorithm. Because this algorithm is one-way, we can’t guess the
original password from the encrypted version.

Historically, the algorithm that was used (see Morris and Thompson [1979]) always
generated 13 printable characters from the 64-character set [a-zA-20-9. /1. Some
newer systems use an MD5 algorithm to encrypt passwords, generating 31 characters
per encrypted password. (The more characters used to store the encrypted password,
the more combinations there are, and the harder it will be to guess the password by
trying all possible variations.) When we place a single character in the encrypted
password field, we ensure that an encrypted password will never match this value.

Given an encrypted password, we can’t apply an algorithm that inverts it and
returns the plaintext password. (The plaintext password is what we enter at the
Password: prompt.) But we could guess a password, run it through the one-way
algorithm, and compare the result to the encrypted password. If user passwords were
randomly chosen, this brute-force approach wouldn’t be too successful. Users,
however, tend to choose nonrandom passwords, such as spouse’s name, street names,
or pet names. A common experiment is for someone to obtain a copy of the password
file and try guessing the passwords. (Chapter 4 of Garfinkel et al. [2003] contains
additional details and history on passwords and the password encryption scheme used
on UNIX systems.)

To make it more difficult to obtain the raw materials (the encrypted passwords),
systems now store the encrypted password in another file, often called the shadow
password file. Minimally, this file has to contain the user name and the encrypted
password. Other information relating to the password is also stored here (Figure 6.3).

Description struct spwd
member
user login name char *sp_namp
encrypted password char *sp_pwdp
days since Epoch of last password change | int sp_lstchg
days until change allowed int sp_min
days before change required int sp_max
days warning for expiration int sp_warn
days before account inactive int sp_inact
days since Epoch when account expires int sp_expire
reserved unsigned int sp_flag

Figure 6.3 Fields in / etc/shadow file

166

System Data Files and Information Chapter 6

6.4

The only two mandatory fields are the user’s login name and encrypted password.
The other fields control how often the password is to change—known as “password
aging”—and how long an account is allowed to remain active.

The shadow password file should not be readable by the world. Only a few
programs need to access encrypted passwords—login(l) and passwd(l), for
example—and these programs are often set-user-ID root. With shadow passwords, the
regular password file, /et c/passwd, can be left readable by the world.

On Linux 2.4.22 and Solaris 9, a separate set of functions is available to access the
shadow password file, similar to the set of functions used to access the password file.

#include <shadow.h>
struct spwd *getspnam(const char *name) ;
struct spwd *getspent (void) ;
Both return: pointer if OK, NULL on error

void setspent (void) ;

void endspent (void) ;

On FreeBSD 5.2.1 and Mac OS X 10.3, there is no shadow password structure. The
additional account information is stored in the password file (refer back to Figure 6.1).

Group File

The UNIX System’s group file, called the group database by POSIX.1, contains the fields
shown in Figure 6.4. These fields are contained in a group structure that is defined in
<grp.hs>.

o struct group FreeBSD Linux MacOSX Solaris
Description member POSIXT) so1 2422 103 9
group name char *gr_name
encrypted password char *gr_passwd . . o .
numerical group ID int gr_gid . . . o o
array of pointers to individual |char **gr_mem
user names

Figure 6.4 Fields in /etc/group file

The field gr_mem is an array of pointers to the user names that belong to this group.
This array is terminated by a null pointer.

We can look up either a group name or a numerical group ID with the following
two functions, which are defined by POSIX.1.

#include <grp.h>
struct group *getgrgid(gid_t gid);

struct group *getgrnam{const char *name) ;

Both return: pointer if OK, NULL on error

Section 6.5 Supplementary Group IDs 167

As with the password file functions, both of these functions normally return pointers to
a static variable, which is overwritten on each call.

If we want to search the entire group file, we need some additional functions. The
following three functions are like their counterparts for the password file.

| #include <grp.h>

struct group *getgrent (void);
Returns: pointer if OK, NULL on error or end of file

void setgrent (void) ;

void endgrent (void);

These three functions are not part of the base POSIX.1 standard. They are defined as XSI
extensions in the Single UNIX Specification. All UNIX Systems provide them.

‘The setgrent function opens the group file, if it's not already open, and rewinds
it. The getgrent function reads the next entry from the group file, opening the file
first, if it’s not already open. The endgrent function closes the group file.

6.5 Supplementary Group IDs

The use of groups in the UNIX System has changed over time. With Version 7, each
user belonged to a single group at any point in time. When we logged in, we were
assigned the real group ID corresponding to the numerical group ID in our password
file entry. We could change this at any point by executing newgrp(1). If the newgrp
command succeeded (refer to the manual page for the permission rules), our real group
ID was changed to the new group’s ID, and this was used for all subsequent file access
permission checks. We could always go back to our original group by executing
newgrp without any arguments.

This form of group membership persisted until it was changed in 4.2BSD (circa
1983). With 4.2BSD, the concept of supplementary group IDs was introduced. Not only
did we belong to the group corresponding to the group ID in our password file entry,
but we also could belong to up to 16 additional groups. The file access permission
checks were modified so that not only was the effective group ID compared to the file’s
group ID, but also all the supplementary group IDs were compared to the file’s group
ID.

Supplementary group IDs are a required feature of POSIX.1. (In older versions of POSIX.1,
they were optional) The constant NGROUPS_MAX (Figure 2.10) specifies the number of
supplementary group IDs. A common value is 16 (Figure 2.14).

The advantage in using supplementary group IDs is that we no longer have to
change groups explicitly. It is not uncommon to belong to multiple groups (i.e.,
participate in multiple projects) at the same time.

168 System Data Files and Information Chapter 6

Three functions are provided to fetch and set the supplementary group IDs.

#include <unistd.h>
int getgroups (int gidsetsize, gid_t grouplist(]) ;
Returns: number of supplementary group IDs if OK, -1 on error

#include <grp.h> /* on Linux */
#include <unistd.h> /* on FreeBSD, Mac 0S X, and Solaris */

int setgroups (int ngroups, const gid_ t grouplist[]) ;

#include <grp.h> /* on Linux and Solaris */
#include <unistd.h> /* on FreeBSD and Mac 0S X */

int initgroups(const char *usermame, gid_t basegid) ;

Both return: 0 if OK, -1 on error

Of these three functions, only getgroups is specified by POSIX.1. Because setgroups and
initgroups are privileged operations, they are not part of POSIX.1. All four platforms
covered in this book, however, support all three functions.

On Mac OS X 10.3, basegid is declared to be of type int.

The getgroups function fills in the array grouplist with the supplementary group
IDs. Up to gidsetsize elements are stored in the array. The number of supplementary
group IDs stored in the array is returned by the function.

As a special case, if gidsetsize is 0, the function returns only the number of
supplementary group IDs. The array grouplist is not modified. (This allows the caller to
determine the size of the grouplist array to allocate.)

‘The setgroups function can be called by the superuser to set the supplementary
group ID list for the calling process: grouplist contains the array of group IDs, and
ngroups specifies the number of elements in the array. The value of ngroups cannot be
larger than NGROUPS_MAX.

The only use of setgroups is usually from the initgroups function, which reads
the entire group file—with the functions getgrent, setgrent, and endgrent, which
we described earlier—and determines the group membership for username. It then calls
setgroups to initialize the supplementary group ID list for the user. One must be
superuser to call initgroups, since it calls setgroups. In addition to finding all the
groups that username is a member of in the group file, initgroups also includes
basegid in the supplementary group ID list; basegid is the group ID from the password
file for username.

The initgroups function is called by only a few programs: the login(1) program,
for example, calls it when we log in.

Section 6.7

Other Data Files -~ 169

6.6

6.7

Implementation Differences

We've already discussed the shadow password file supported by Linux and Solaris.
FreeBSD and Mac OS X store encrypted passwords differently. Figure 6.5 summarizes
how the four platforms covered in this book store user and group information.

Information FreeBSD Linux l Mac OS X Solaris |
5.2.1 2.4.22 103 9

Account information /etc/passwd /etc/passwd | netinfo /etc/passﬁ

Encrypted passwords /etc/master.passwd | /etc/shadow | netinfo /etc/shadow

Hashed password files? | yes no no no

Group information /etc/group /etc/group netinfo /etc/groupJ

Figure 6.5 Account implementation differences

On FreeBSD, the shadow password file is /etc/master.passwd. Special
commands are used to edit it, which in turn generate a copy of /etc/passwd from the
shadow password file. In addition, hashed versions of the files are also generated:
/etc/pwd.db is the hashed version of /etc/passwd, and /etc/spwd.db is the
hashed version of /etc/master.passwd. These provide better performance for large
installations.

On Mac OS X, however, /etc/passwd and /etc/master.passwd are used only
in single-user mode (when the system is undergoing maintenance; single-user mode
usually means that no system services are enabled). In multiuser mode—during
normal operation—the netinfo directory service provides access to account
information for users and groups.

Although Linux and Solaris support similar shadow password interfaces, there are
some subtle differences. For example, the integer fields shown in Figure 6.3 are defined
as type int on Solaris, but as long int on Linux. Another difference is the
account-inactive field. Solaris defines it to be the number of days since the user last
logged in to the system, whereas Linux defines it to be the number of days after which
the maximum password age has been reached.

On many systems, the user and group databases are implemented using the
Network Information Service (NIS). This allows administrators to edit a master copy of
the databases and distribute them automatically to all servers in an organization. Client
systems contact servers to look up information about users and groups. NIS+ and the
Lightweight Directory Access Protocol (LDAP) provide similar functionality. Many
systems control the method used to administer each type of information through the
/etc/nsswitch.conf configuration file.

Other Data Files

We've discussed only two of the system’s data files so far: the password file and the
group file. Numerous other files are used by UNIX systems in normal day-to-day
operation. For example, the BSD networking software has one data file for the services

170 System Data Files and Information Chapter 6

provided by the various network servers (/etc/services), one for the protocols
(/etc/protocols), and one for the networks (/etc/networks). Fortunately, the
interfaces to these various files are like the ones we've already described for the
password and group files.

The general principle is that every data file has at least three functions:

1. A get function that reads the next recor !. opening the file if necessary. These
functions normally return a pointer to a structure. A null pointer is returned
when the end of file is reached. Most of the get functions return a pointer to a
static structure, so we always have to copy it if we want to save it.

2. A set function that opens the file, if not already open, and rewinds the file.
This function is used when we know we want to start again at the beginning of
the file.

3. An end entry that closes the data file. As we mentioned earlier, we always have
to call this when we're done, to close all the files.

Additionally, if the data file supports some form of keyed lookup, routines are provided
to search for a record with a specific key. For example, two keyed lookup routines are
provided for the password file: get pwnam looks for a record with a specific user name,
and getpwuid looks for a record with a specific user ID.

Figure 6.6 shows some of these routines, which are common to UNIX systems. In
this figure, we show the functions for the password files and group file, which we
discussed earlier in this chapter, and some of the networking functions. There are get,
set, and end functions for all the data files in this figure.

Description Data file Header | Structure Additional keyed lookup functions
passwords | /etc/passwd <p\;a_. h> | })asswd getpwnam, getpwuid

groups /etc/group <grp.h> group getgrnam, getgrgid

shadow /etc/shadow i <shadow.h> | spwd getspnam

hosts /etc/hosts <netdb.h> hostent | gethostbyname,gethostbyaddr
networks /etc/networks | <netdb.h> | netent getnetbyname, getnetbyaddr
protocols /etc/protocols ! <netdb.h> | protoent | getprotobyname, getprotobynumber
services /etc/services | <netdb.hs> servent | getservbyname, getservbyport

Figure 6.6 Similar routines for accessing system data files

Under Solaris, the last four data files in Figure 6.6 are symbolic links to files of the same name
in the directory /etc/inet. Most UNIX System implementations have additional functions
that are like these, but the additional functions tend to deal with system administration files
and are specific to each implementation. ’

6.8 Login Accounting

Two data files that have been provided with most UNIX systems are the utmp file,
which keeps track of all the users currently logged in, and the wtmp file, which keeps

Section 6.9 System Identification 171

6.9

track of all logins and logouts. With Version 7, one type of record was written to both
files, a binary record consisting of the following structure:

struct utmp {

char ut_line(8]; /* tty line: "ttyho", "ttydo", "ttyp0", ... * /
char ut name[8]; /* login name */

long ut_time; /* seconds since Epoch */

}i

On login, one of these structures was filled in and written to the utmp file by the login
program, and the same structure was appended to the wtmp file. On logout, the entry
in the utmp file was erased—filled with null bytes—by the init process, and a new
entry was appended to the wtmp file. This logout entry in the wtmp file had the
ut_name field zeroed out. Special entries were appended to the wtmp file to indicate
when the system was rebooted and right before and after the system’s time and date
was changed. The who(1) program read the utmp file and printed its contents in a
readable form. Later versions of the UNIX System provided the l1ast(l) command,
which read through the wtmp file and printed selected entries.

Most versions of the UNIX System still provide the utmp and wtmp files, but as
expected, the amount of information in these files has grown. The 20-byte structure that
was written by Version 7 grew to 36 bytes with SVR2, and the extended utmp structure
with SVR4 takes over 350 bytes!

The detailed format of these records in Solaris is given in the utmpx(4) manual page. With
Solaris 9, both files are in the /var/adm directory. Solaris provides numerous functions
described in getutx(3) to read and write these two files.

On FreeBSD 5.2.1, Linux 2.4.22, and Mac OS X 10.3, the utmp(5) manual page gives the format
of their versions of these login records. The pathnames of these two files are /var/run/utmp
and /var/log/wtmp.

System Identification

POSIX.1 defines the uname function to return information on the current host and
operating system.

#include <sys/utsname.h>

int uname (struct utsname *name) ;

Returns: non-negative value if OK, -1 on error

We pass the address of a ut sname stfucture, and the function fills it in. POSIX.1 defines
only the minimum fields in the structure, which are all character arrays, and it’s up to
each implementation to set the size of each array. Some implementations provide
additional fields in the structure.

172

System Data Files and Information Chapter 6

struct utsname {

char sysnamel[]; /* name of the operating system */

char nodenamel]; /* name of this node */

char releasel]; /* current release of operating system */
char versionl(]; /* current version of this release */
char machinel]; /* name of hardware type */

}i

Each string is null-terminated. The maximum name lengths supported by the four
platforms discussed in this book are listed in Figure 6.7. The information in the
utsname structure can usually be printed with the uname(1) command.

POSIX.1 warns that the nodename element may not be adequate to reference the host on a
communications network. This function is from System V, and in older days, the nodename
element was adequate for referencing the host on a UUCP network.

Realize also that the information in this structure does not give any information on the
POSIX.1 level. This should be obtained using POSIX_VERSION, as described in Section 2.6.

Finally, this function gives us a way only to fetch the information in the structure; there is
nothing specified by POSIX.1 about initializing this information.

Historically, BSD-derived systems provide the gethostname function to return
only the name of the host. This name is usually the name of the host on a TCP/IP
network.

#include <unistd.h>
int gethostname (char *name, int namelen) ;

Returns: 0 if OK, -1 on error

The namelen argument specifies the size of the name buffer. If enough space is provided,
the string returned through name is null terminated. If insufficient room is provided,
however, it is unspecified whether the string is null terminated.

The gethostname function, now defined as part of POSIX.1, specifies that the
maximum host name length is HOST NAME MAX. The maximum name lengths
supported by the four implementations covered in this book are summarized in
Figure 6.7.

Maximum name length
Interface FreeBSD Linux Mac OS X Solaris
521 2.4.22 103 9
uname 256 65 256 257
gethostname 256 64 256 256

Figure 6.7 System identification name limits

If the host is connected to a TCP/IP network, the host name is normally the fully
qualified domain name of the host.

Section 6.10 Time and Date Routines 173

6.10

There is also a hostname(1) command that can fetch or set the host name. (The
host name is set by the superuser using a similar function, sethostname.) The host
name is normally set at bootstrap time from one of the start-up files invoked by
/etc/rcorinit.

Time and Date Routines

The basic time service provided by the UNIX kernel counts the number of seconds that
have passed since the Epoch: 00:00:00 January 1, 1970, Coordinated Universal Time
(UTC). In Section 1.10, we said that these seconds are represented in a time t data
type, and we call them calendar times. These calendar times represent both the time and
the date. The UNIX System has always differed from other operating systems in (a)
keeping time in UTC instead of the local time, (b) automatically handling conversions,
such as daylight saving time, and (c) keeping the time and date as a single quantity.
The time function returns the current time and date.

#include <time.h>

time t time (time_t *calptr);

Returns: value of time if OK, —1 on error

The time value is always returned as the value of the function. If the argument is non-
null, the time value is also stored at the location pointed to by calptr.

We haven’t said how the kernel’s notion of the current time is initialized. Historically, on
implementations derived from System V, the st ime(2) function was called, whereas BSD-
derived systems used settimeof day(2).

The Single UNIX Specification doesn’t specify how a system sets its current time.

The gettimeofday function provides greater resolution (up to a microsecond)
than the t ime function. This is important for some applications.

#include <sys/time.h>

int gettimeofday(struct timeval *restrict fp, void *restrict fzp);

Returns: 0 always

This function is defined as an XSI extension in the Single UNIX Specification. The only
legal value for tzp is NULL; other values result in unspecified behavior. Some platforms
support the specification of a time zone through the use of fzp, but this is
implementation-specific and not defined by the Single UNIX Specification.

The get t imeofday function stores the current time as measured from the Epoch in
the memory pointed to by tp. This time is represented as a timeval structure, which
stores seconds and microseconds:

174 System Data Files and Information ' Chapter 6

struct timeval ({
time t tv_sec; /* seconds */
long tv_usec; /* microseconds */

}i

Once we have the integer value that counts the number of seconds since the Epoch,
we normally call one of the other time functions to convert it to a human-readable time
and date. Figure 6.8 shows the relationships between the various time functions.

formatted string
@

&7

\ ﬂE) |
\ of ! 'y
v El g =
sl -
\ e | I“J
v EF IS 1
O 48 V E

\ i

time_t |(calendar time)
time

kernel

Figure 6.8 Relationship of the various time functions

(The four functions in this figure that are shown with dashed lines—localtime,
mktime, ctime, and strftime—are all affected by the TZ environment variable,
which we describe later in this section.)

The two functions localtime and gmtime convert a calendar time into what'’s
called a broken-down time, a tm structure.

struct tm { /* a broken-down time */
int tm_sec; /* seconds after the minute: [0 - 60] */
int tm min; /* minutes after the hour: [0 - 59] */

int tm_hour; /* hours after midnight: [0 - 23] */

int tm _mday; /* day of the month: [1 - 31] */

int tm_mon; /* months since January: [0 - 11] */

int tm _year; /* years since 1900 */

int tm wday; /* days since Sunday: [0 - 6] */

int tm_yday; /* days since January 1: [0 - 365] */

int tm_isdst; /* daylight saving time flag: <0, 0, >0 */

Section 6.10 Time and Date Routines 175

The reason that the seconds can be greater than 59 is to allow for a leap second. Note
that all the fields except the day of the month are 0-based. The daylight saving time flag
is positive if daylight saving time is in effect, 0 if it’s not in effect, and negative if the
information isn’t available.

In previous versions of the Single UNIX Specification, double leap seconds were allowed.
Thus, the valid range of values for the tm_sec member was 0-61. The formal definition of
UTC doesn't allow for double leap seconds, so the valid range for seconds is now defined to be
0-60.

#include <time.h>
struct tm *gmtime(const time_t *calptr);

struct tm *localtime(const time_t *calptr);

Both return: pointer to broken-down time

The difference between localtime and gmtime is that the first converts the calendar
time to the local time, taking into account the local time zone and daylight saving time
flag, whereas the latter converts the calendar time into a broken-down time expressed
as UTC.

The function mktime takes a broken-down time, expressed as a local time, and
converts it into a time_t value.

#include <time.h>

time_t mktime (struct tm *tmpir);

Returns: calendar time if OK, -1 on error

The asctime and ctime functions produce the familiar 26-byte string that is
similar to the default output of the date(1) command:

Tue Feb 10 18:27:38 2004\n\0

#include <time.h>
char *asctime (const struct tm *imptr);

char *ctime (const time_t *calptr) ;

Both return: pointer to null-terminated string

The argument to asctime is a pointer to a broken-down string, whereas the argument
to ctime is a pointer to a calendar time.

The final time function, strftime, is the most complicated. It is a printf-like
function for time values.

176

System Data Files and Information Chapter 6

#include <time.h>

size t strftime(char *restrict buf, size t maxsize,
const char *restrict format,
const struct tm *restrict fmptr);

Returns: number of characters stored in array if room, 0 otherwise

The final argument is the time value to format, specified by a pointer to a broken-down
time value. The formatted result is stored in the array buf whose size is maxsize
characters. If the size of the result, including the terminating null, fits in the buffer, the
function returns the number of characters stored in buf, excluding the terminating null.
Otherwise, the function returns 0.

The format argument controls the formatting of the time value. Like the printf
functions, conversion specifiers are given as a percent followed by a special character.
All other characters in the format string are copied to the output. Two percents in a row
generate a single percent in the output. Unlike the printf functions, each conversion
specified generates a different fixed-size output string—there are no field widths in the
format string. Figure 6.9 describes the 37 ISO C conversion specifiers. The third column
of this figure is from the output of strftime under Linux, corresponding to the time
and date Tue Feb 10 18:27:38 EST 2004.

The only specifiers that are not self-evident are $U, %V, and %W. The %U specifier
represents the week number of the year, where the week containing the first Sunday is
week 1. The %W specifier represents the week number of the year, where the week
containing the first Monday is week 1. The %V specifier is different. If the week
containing the first day in January has four or more days in the new year, then this is
treated as week 1. Otherwise, it is treated as the last week of the previous year. In both
cases, Monday is treated as the first day of the week.

As with printf, strftime supports modifiers for some of the conversion
specifiers. The E and O modifiers can be used to generate an alternate format if
supported by the locale.

Some systems support additional, nonstandard extensions to the format string for strftime.

We mentioned that the four functions in Figure 6.8 with dashed lines were affected
by the TZ environment variable: localtime, mktime, ctime, and strftime. If
defined, the value of this environment variable is used by these functions instead of the
default time zone. If the variable is defined to be a null string, such as TZ=, then UTC is
normally used. The value of this environment variable is often something like
TZ=ESTS5EDT, but POSIX.1 allows a much more detailed specification. Refer to the
Environment Variables chapter of the Single UNIX Specification [Open Group 2004] for
all the details on the TZ variable.

All the time and date functions described in this section, except gett imeofday, are defined
by the ISO C standard. POSIX.1, however, added the TZ environment variable. On FreeBSD
5.2.1, Linux 2.4.22, and Mac OS X 10.3, more information on the TZ variable can be found in
the tzset(3) manual page. On Solaris 9, this information is in the environ(5) manual page.

